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1. Introduction

Deductive systems, given via axioms and rules of inference, are a common con-
ceptual tool in mathematical logic and computer science. They are used to specify
many varieties of logics and logical theories as well as aspects of programming
languages such as type systems or operational semantics. A logical framework is
a meta-language for the specification of deductive systems. A number of different
frameworks have been proposed and implemented for a variety of purposes. In addi-
tion, general reasoning systems have been used to study deductions as mathematical
objects, without specific support for the domain of deductive systems.

In this chapter we highlight the major themes, concepts, and design choices for
logical frameworks and provide pointers to the literature for further reading. We
concentrate on systems designed specifically as frameworks and among them on
those most immediately based on deduction: hereditary Harrop formulas (imple-
mented in λProlog and Isabelle) and the LF type theory (implemented in Elf). We
briefly mention other approaches below and discuss them in more detail in Section 8.

Logical frameworks are subject to the same general design principles as other
specification and programming languages. They should be simple and uniform,
providing concise means to express the concepts and methods of the intended ap-
plication domains. Meaningless expressions should be detected statically and it
should be possible to structure large specifications and verify that the components
fit together. There are also concerns specific to logical frameworks. Perhaps most
importantly, an implementation must be able to check deductions for validity with
respect to the specification of a deductive system. Secondly, it should be feasible to
prove (informally) that the representations of deductive systems in the framework
are adequate so that we can trust formal derivations. We return to each of these
points when we discuss different design choices for logical frameworks.

Historically, the first logical framework was Automath [de Bruijn 1968, de Bruijn
1980, Nederpelt, Geuvers and de Vrijer 1994] and its various languages, developed
during the late sixties and early seventies. The goal of the Automath project was
to provide a tool for the formalization of mathematics without foundational prej-
udice. Therefore, the logic underlying a particular mathematical development was
an integral part of its formalization. Many of the ideas from the Automath lan-
guage family have found their way into modern systems. The main experiment
conducted within Automath was the formalization of Landau’s Foundations of
Analysis [Jutting 1977]. In the early eighties the importance of constructive type
theories for computer science was recognized through the pioneering work of Martin-
Löf [Martin-Löf 1980, Martin-Löf 1985a, Martin-Löf 1985b]. On the one hand, this
led to a number of systems for constructive mathematics and the extraction of
functional programs from constructive proofs (beginning with Petersson’s imple-
mentation [Petersson 1982], followed by Nuprl [Nuprl 1999, Constable et al. 1986],
Coq [Coq 1999, Dowek, Felty, Herbelin, Huet, Murthy, Parent, Paulin-Mohring and
Werner 1993], PX [Hayashi and Nakano 1988], and LEGO [LEGO 1998, Luo and
Pollack 1992, Pollack 1994]). On the other hand, it strongly influenced the design
of LF [Harper, Honsell and Plotkin 1987, Harper, Honsell and Plotkin 1993], some-
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times called the Edinburgh Logical Framework (ELF). Concurrent with the devel-
opment of LF, frameworks based on higher-order logic and resolution were designed
in the form of generic theorem provers [Paulson 1986, Paulson 1989, Nipkow and
Paulson 1992] and logic programming languages [Nadathur and Miller 1988, Miller,
Nadathur, Pfenning and Scedrov 1991]. The type-theoretic and logic programming
approaches were later combined in the Elf language [Pfenning 1989, Pfenning
1991a]. At this point, there was a pause in the development of new frame-
works, while the potential and limitations of existing systems were explored in
numerous experiments (see Section 8.3). The mid-nineties saw renewed activ-
ity with implementations of frameworks based on inductive definitions such as
FS0 [Feferman 1988, Matthews, Smaill and Basin 1993, Basin and Matthews 1996]
and ALF [Nordström 1993, Altenkirch, Gaspes, Nordström and von Sydow 1994],
partial inductive definitions [Hallnäs 1991, Eriksson 1993a, Eriksson 1994], sub-
structural frameworks [Schroeder-Heister 1991, Girard 1993, Miller 1994, Cervesato
and Pfenning 1996, Cervesato 1996], rewriting logic [Mart̀ı-Oliet and Meseguer
1993, Borovanský, Kirchner, Kirchner, Moreau and Ringeissen 1998], and labelled
deductive systems [Gabbay 1994, Basin, Matthews and Viganò 1998, Gabbay 1996].
A full discussion of these is beyond the scope of this chapter—the reader can find
some brief remarks in Section 8.

Some researchers distinguish between logical frameworks and meta-logical frame-
works [Basin and Constable 1993], where the latter is intended as a meta-language
for reasoning about deductive systems rather than within them. Clearly, any meta-
logical framework must also provide means for specifying deductive systems, though
with different goals. We therefore consider them here and discuss issues related
to meta-theoretic reasoning in Section 5. Systems not based on type theory are
sometimes called general logics. We do not attempt to delineate precisely what
characterizes general logics as a special case of logical frameworks, but we point
out some methodological differences between approaches rooted in type theory and
logic throughout this chapter. They are summarized in Section 8.

The remainder of this chapter follows the tasks which arise in a typical applica-
tion of a logical framework: specification, search, and meta-theory. As an example
we pick a fragment of predicate logic. In Section 2 we introduce techniques for the
representation of formulas and other expressions of a given object logic. Section 3
treats the representation of judgments and legal deductions. These two sections
therefore illustrate how logical frameworks support specification of deductive sys-
tems. Section 4 sketches generic principles underlying proof search and how they
are realized in logical frameworks. It therefore covers reasoning within deductive
systems. Section 5 discusses approaches for formal reasoning about the properties
of logical systems. Sections 6 and 7 summarize the formal definitions underlying the
frameworks under consideration in this chapter. We conclude with remarks about
current lines of research and applications in Section 8.
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2. Abstract syntax

The specification of a deductive system usually proceeds in two stages: first we define
the syntax of an object language and then the axioms and rules of inference. In order
to concentrate on the meanings of expressions we ignore issues of concrete syntax
and parsing and concentrate on specifying abstract syntax. Different framework
implementations provide different means for customizing the parser in order to
embed the desired object-language syntax.

As an example throughout this chapter we consider formulations of intuitionis-
tic and classical first-order logic. In order to keep this chapter to a manageable
length, we restrict ourselves to the fragment containing implication, negation, and
universal quantification. The reader is invited to test his or her understanding
by extending the development to include a more complete set of connectives and
quantifiers. Representations of first-order intuitionistic and classical logic in vari-
ous logical frameworks can be found in the literature (see, for example, [Felty and
Miller 1988, Paulson 1990, Harper et al. 1993, Pfenning 2001]).

Our fragment of first-order logic is constructed from individual variables, func-
tion symbols, and predicate symbols in the usual way. We assume each function
and predicate symbol has a unique arity, indicated by a superscript, but generally
omitted since it will be clear from the context. Individual constants are function
symbols of arity 0 and propositional constants are predicate symbols of arity 0.

Function symbols fk

Predicate symbols pk

Variables x

Terms t ::= x | fk(t1, . . . , tk)

Atoms P ::= pk(t1, . . . , tk)

Formulas A ::= P | A1 ⊃A2 | ¬A | ∀x. A

We assume that there is an infinite number of variables x. The set of function
and predicate symbols is left unspecified in the general development of logic. We
therefore view our specification as open-ended. A commitment, say, to arithmetic
would fix the available function and predicate symbols. We write x and y for vari-
ables, t and s for terms, and A, B, and C for formulas. There are some important
operations on terms and formulas required for the presentation of inference rules.
Specifically, we need the notions of free and bound variable, the renaming of bound
variables, and the operations of substitution [t/x]s and [t/x]A, where the latter
may need to rename variables bound in A in order to avoid variable capture. We
assume that these operations are understood and do not define them formally. An
assumption generally made in connection with variable names is the so-called vari-
able convention [Barendregt 1980] (which goes back to Church and Rosser [Church
and Rosser 1936]) which states that expressions differing only in the names of
their bound variables are considered identical. We examine to which extent various
frameworks support this convention.
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2.1. Uni-typed representations

As the archetypical untyped representation language we choose first-order terms
themselves. Actually, it is more appropriate to think of it as a uni-typed language,
that is, a language with a single type of individuals. For each function symbol f we
have a corresponding function symbol cf of the same arity in the representation.
Similarly, each predicate symbol p is represented by a constant cp. The represen-
tation of variables is more complex, since there are infinitely many of them. For
simplicity, we assume variables are enumerated and the nth variable xn is repre-
sented by var(n), where the natural numbers n are either meta-language constants
or constructed from constants for zero and successor. We write p−q for the repre-
sentation function which maps expressions of an object language to objects in the
meta-language. We use sans-serif font for constants in various logical frameworks
we consider.

pxnq = var(n)

pfk(t1, . . . , tk)q = ckf (pt1q, . . . , ptkq)
ppk(t1, . . . , tk)q = ckp(pt1q, . . . , ptkq)

pA ⊃Bq = imp(pAq, pBq)
p¬Aq = not(pAq)
p∀x. Aq = forall(pxq, pAq)

However, our task is not yet complete: we need to be able to check, for example,
if a given meta-language term represents a formula. For this we use Horn clauses
to axiomatize the atomic proposition formula(t) which expresses that the meta-
language term t represents a formula of the object language. This requires several
auxiliary predicates to recognize representations of variables and terms. The spec-
ification below is effective in the sense that it can be executed in pure Prolog to
check if a given term represents a well-formed formula. For our purposes, we think
of Horn clauses as generated by the following grammar.

Horn clauses D ::= P | > | D1 ∧D2 | P1 ∧ . . .∧ Pn ⊃ P | ∀x.D

where P stands for atomic propositions and > stands for the true proposition. We
refer to a collection of closed Horn clauses as a Horn theory and write T `H P if
the Horn theory T entails P . Natural numbers are represented in unary form with
z representing 0 and s representing the successor function.
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nat(z)

∀n. nat(n) ⊃ nat(s(n))

∀n. nat(n) ⊃ variable(var(n))

∀t. variable(t)⊃ term(t)

∀A. ∀B. formula(A) ∧ formula(B) ⊃ formula(imp(A,B))

∀A. formula(A)⊃ formula(not(A))

∀x. ∀A. variable(x) ∧ formula(A)⊃ formula(forall(x, A))

We have to add clauses for particular function and predicate symbols. For example,
if an equality predicate eq2 is available in the object logic, we add the clause

∀x. ∀y. term(x) ∧ term(y) ⊃ formula(eq(x, y))

Arities of the function symbols and predicates are thus built into the representation.
A drawback with this and related first-order, uni-typed methods is that we have to
prove formula(t) to verify that t represents a formula of the object language; it is
an external rather than an internal property of the representation. More precisely,
if we denote the theory above by F , then we have the following representation
theorem.

2.1. Theorem (Adequacy).

1. F `H variable(t′) iff t′ = pxnq for a variable xn.

2. F `H term(t′) iff t′ = ptq for a term t.

3. F `H formula(t′) iff t′ = pAq for a formula A.

Proof. In one direction this follows by an easy induction on n and the structure
of t and A.

In the other direction we need a deep semantic or proof-theoretic understanding
of Horn logic. For example, we use the structure of the least Herbrand model, or
we can take advantage of the fact that a Horn theory inductively defines its atomic
predicates.

Adequacy theorems play a critical role in logical frameworks. They guarantee
that we can translate expressions from the object language to objects in the meta-
language, compute with them, and then interpret the results back in the object
language. This will be particularly important when we consider the adequacy of the
encoding of inference rules (Theorem 3.1) and deductions (Theorem 3.2), because
they ensure that formal reasoning in the logical framework is correct with respect
to the object logic under consideration. Generally, we would like the representation
function to be a bijection, but this is not always necessary as long as we can translate
safely in both directions.
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For the particular adequacy theorem above it is irrelevant whether the proposi-
tions of the meta-logic are interpreted classically or intuitionistically, since classical
and intuitionistic provability coincide on Horn clauses. We can also view a fixed
set of Horn clauses as an inductive definition of the atomic predicates involved.
In our example, the predicates nat, variable, term, and formula are all inductively
defined by the clauses given above. The fact that Horn clauses allow such diverse
interpretations is one reason why they constitute a stable and frequently used basis
for logical frameworks.

The first-order representation above does not support the variable conven-
tion: renaming of bound variables must be implemented explicitly. For example,
the representations of ∀x1. p(x1) and ∀x3. p(x3) are not identified in the meta-
language. Instead we can define a binary predicate id such that id(A1, A2) holds
iff A1 and A2 represent formulas which differ only in the names of their bound
variables. The technique of de Bruijn indices [de Bruijn 1972] eliminates this
shortcoming without requiring a change in the expressive power of the meta-
language. There, a variable is represented by a natural number n, which indi-
cates that the variable is bound by the nth enclosing abstraction. For example,
∀x1. ∀x5. p(x5) ⊃ p(x1) and all alphabetic variants of it would be represented as
forall (forall (imp(p(var(1)), p(var(2))))). De Bruijn indices have been employed as
the basic representation for many implementation and verification efforts for de-
ductive systems (see, for example, [de Bruijn 1972, Shankar 1988]).

2.2. Simply-typed representation

A standard method for transforming an external validity condition (given here by a
Horn theory) into an internal property of the representation is to introduce types.
By designing the type system so that type checking is decidable, we turn a dynamic
property into a static property. We begin with simple types. The idea is to introduce
type constants i and o for object-level terms and formulas, respectively. Implication,
for example, is then represented by a constant of type o → (o → o), that is,
a formula constructor taking two formulas as arguments employing the standard
technique of Currying. This idea can be directly applied to the representation in the
previous section if we also introduce a type constant for variables. We can improve
upon this by enriching the representation language to include higher-order terms,
which leads us to the simply-typed λ-calculus, λ→. We briefly summarize it here;
for more complete discussion, see Section 6.

Types A ::= a | A1 → A2

Objects M ::= c | x | λx:A.M |M1 M2

We use a to range over type constants, c over object constants, and x over object
variables. We follow the usual syntactic conventions: → associates to the right,
and application to the left. Parentheses group subexpressions, and the scope of a
λ-abstraction extends to the innermost enclosing parentheses or to the end of the
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expression. We allow tacit α-conversion (renaming of bound variables) and write
[M/x]N for capture-avoiding substitution of M for x in N . Constants and variables
are declared and assigned types in a signature Σ and context Γ, respectively. Neither
is permitted to declare constants or variables more than once.

Using the simply-typed λ-calculus λ→ as a representation language requires us
to distinguish between arbitrary well-typed objects and canonical forms. Canonical
forms directly represent object-language entities, while the meaning of arbitrary
well-typed objects is computed by converting them to canonical form. This is similar
to most programming languages where values represent data and the meaning of
an expression is determined by evaluation. This point of view leads to the following
principal judgments. They are parameterized by a signature Σ that declares type
and object constants and a context Γ that declares the type of variables free in M
and M ′.

Γ Σ̀ M : A M is an object of type A

Γ Σ̀ M
′ ⇑ A M ′ is a canonical object of type A

Γ Σ̀ M ⇑M ′ : A M has canonical form M ′ at type A

The formal definition of the language and these judgments can be found in Sec-
tion 6. The appropriate notion for canonical forms are long βη-normal forms, that
is, β-reduced and η-expanded objects. Given a syntactic category in the object
language and its representation type A, canonical forms of type A are in bijective
correspondence with object-language expressions in the appropriate syntactic cate-
gory (see Theorem 2.2 and the subsequent discussion). Since every valid object has
a unique type and canonical form (see Theorem 6.1), the meaning of an arbitrary
valid object is unambiguously determined.

Two objects are definitionally equal if they have the same canonical form.

Γ Σ̀ M ≡ N : A M is definitionally equal to N at type A.

This is equivalent to stipulating that two objects are definitionally equal if they
can be transformed into each other by β- and η-conversion. Since canonical forms
depend on types, definitional equality also depends on types, although we some-
times abbreviate it as M ≡ N . Formulations of typed λ-calculi as the foundation
for functional programming normally do not include η-conversion, since it does not
preserve observational equivalence under the usual operational semantics. For ex-
ample, the Pure Type Systems reviewed in Chapter XXII typically do not include
η-conversion.

Returning to the representation of first-order logic, we introduce two declarations

i : type

o : type

for the types of representations of terms and formulas, respectively. For every func-
tion symbol f of arity k, we add a corresponding declaration
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f : i→ · · · → i→︸ ︷︷ ︸
k

i.

One of the central ideas in using a λ-calculus for representation is to represent
object-language variables by meta-language variables. Through λ-abstraction at the
meta-level we can properly delineate the scopes of variables bound in the object
language. For simplicity, we give corresponding variables the same name in the two
languages.

pxq = x

pf(t1, . . . , tk)q = f pt1q . . .ptkq
Predicate symbols are dealt with like function symbols. We add a declaration

p : i→ · · · → i→︸ ︷︷ ︸
k

o

for every predicate symbol p of arity k. Here are the remaining cases of the repre-
sentation function.

pp(t1, . . . , tk)q = p pt1q . . .ptkq
pA1 ⊃ A2q = imp pA1q pA2q imp : o→ o→ o

p¬Aq = not pAq not : o→ o

p∀x. Aq = forall (λx:i. pAq) forall : (i→ o)→ o

The last case in the definition introduces the concept of higher-order abstract syntax.
If we represent variables of the object language by variables in the meta-language,
then variables bound by a construct in the object language must be bound in the
representation as well. The simply-typed λ-calculus has a single binding operator λ,
so all variable binding is mapped to binding by λ. This idea goes back to Church’s
formulation of classical type theory (see Chapter XIII) and Martin-Löf’s system
of arities [Nordström, Petersson and Smith 1990]. In programming environments
this was proposed by Huet and Lang [1978] and developed further by Pfenning and
Elliott [1988].

This leads to the first important representation principle of logical frameworks
employing higher-order abstract syntax: Bound variable renaming in the object lan-
guage is modeled by α-conversion in the meta-language. Since we follow the variable
convention in the meta-language, the variable convention in the object language is
automatically supported in a framework using the representation technique above.
Consequently, it cannot be used directly for binding operators for which renaming is
not valid such as occur, for example, in module systems of programming languages.

The variable binding constructor “∀” of the object language is translated into a
second-order constructor forall in the meta-language, since delineating the scope of
x introduces a function (λx:i. pAq) of type i→ o. What does it mean to apply this
function? This question leads to the concept of compositionality, a crucial property
of higher-order abstract syntax. First we note that

(λx:i. pAq) ptq ≡ [ptq/x]pAq,
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since β-conversion is an admissible rule for definitional equality. We can further
prove (by a simple induction) that

[ptq/x]pAq= p[t/x]Aq.

Here, substitution (both at the object and meta-level) are defined to rename bound
variables as necessary in order to avoid the capturing of variables free in t. Com-
positionality also plays a very important role in the representation of deductions
in Section 3; we summarize it as: Substitution in the object language is modeled by
β-reduction in the meta-language.

The declarations of the basic constants above are open-ended in the sense that we
can always add further constants without destroying the validity of earlier represen-
tations. In logic programming, this is called the open-world assumption. However,
the definition also has an inductive character in the sense that the validity judgment
of the meta-language (λ→, in this case) is defined inductively by some axioms and
rules of inference. Therefore we can state and prove that there is a compositional
bijection between well-formed formulas and canonical objects of type o. Since a
term or formula may have free individual variables, and they are represented by
corresponding variables in the meta-language, we must take care to declare them
with their proper types in the meta-language context. We refer to the particular
signature with the declarations for term and formula constructors as F .

2.2. Theorem (Adequacy).

1. We have
x1:i, . . . , xn:i F̀ M ⇑ i iff M = ptq,

where the free variables of term t are among x1, . . . , xn.

2. We have
x1:i, . . . , xn:i F̀ M ⇑ o iff M = pAq,

where the free variables of formula A are among x1, . . . , xn.

3. The representation function p·q is a compositional bijection in the sense that

[ptq/x]psq= p[t/x]sq and [ptq/x]pAq= p[t/x]Aq

Proof. In one direction we proceed by an easy induction on the structure of terms
and formulas. Compositionality can also be established directly by an induction on
the structure of s and A, respectively.

In the other direction we carry out an induction over the structure of the deriva-
tions of M ⇑ i and M ⇑ o. To prove that the representation function is a bijection,
we write down its inverse on canonical forms and prove that both compositions are
identity functions.

An important aspect of this theorem is that it establishes a bijection between
canonical forms of a given type (i and o) and the object-language entities we are
trying to represent (terms and formulas, respectively). It is clear that not every
well-typed object of type i or o lies in the image of the representation function.
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The next two examples show that canonical forms and not just β-normal forms are
actually required. We assume we have one unary predicate p and a corresponding
constant p:i→ o.

` forall (λx:i. ((λq:o. q) (px))) : o

` forall p : o

Both of these object have type o but are not in the image of the representation
function p−q. Their meaning can be determined by conversion to canonical form.
We calculate

` forall (λx:i. ((λq:o. q) (px))) ⇑ forall (λx:i. px) : o

` forall p ⇑ forall (λx:i. px) : o

and thus both objects represent ∀x. P (x) (or an alphabetic variant, of course).
Similar examples exist for the representation of derivations in Section 3. This shows
that canonical forms play the role of observable values in a functional language, and
conversion to canonical form the role of evaluation. A simple β-normal form would
not be sufficient, as the second example illustrates.

We summarize the concepts and techniques introduced in this section. We noted
the tension between external and internal validity of representations. The for-
mer arises if we write a general (logical) specification that allows us to prove
that meta-language objects represent well-formed object-language expressions. The
latter arises from a typed meta-language where well-typed meta-language objects
correspond to well-formed expressions of the object language. Validity of internal
representations are decidable by design, while this issue has to be reexamined in
each case for external validity.

A central issue in the representation of syntax is the treatment of variables.
An encoding where variables are represented by constants in the meta-language
is awkward and requires a significant machinery to handle the frequently required
operations of bound variable renaming and substitution. The more advanced tech-
nique of de Bruijn indices represents occurrences of bound variables by pointers
to their binding occurrence, drastically simplifying many operations. Substitution
must still be axiomatized explicitly. The technique of higher-order abstract syn-
tax represents object language variables by meta-language variables. It requires λ-
abstraction in the meta-language in order to properly delineate the scope of bound
variables, which suggests the use of the simply-typed λ-calculus as a representa-
tion language. In this approach, variable renaming is modeled by α-conversion, and
capture-avoiding substitution is modeled by β-reduction, both of which preserve
definitional equality.

Languages such as the formulas of first-order logic are essentially open-ended
in the sense that we may obtain specific theories by making a commitment to a
particular set of function and predicate symbols. On the other hand they are also
inductive in the sense that in order to prove a meta-theoretic property, we may
need to proceed by induction over the structure of formulas, which is only possible
if we know that we are considering all possible cases. The compositionality of the
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representation function is a simple example of such an inductive proof. This tension
is reflected in the simply-typed λ-calculus as a representation language. On the
one hand, it is open-ended in the sense that we can always declare new constants
without invalidating any prior typing or equality judgments. On the other hand,
the canonical objects constructed over a fixed signature are inductively defined,
since the meta-language has an inductive definition. Some frameworks, such as
FS0 [Feferman 1988, Matthews et al. 1993] or ALF [Nordström 1993] make the
inductive nature of these definitions explicit, at the price of giving up higher-order
abstract syntax. On the other hand one can then reason internally about properties
of deductive systems by induction. We will come back to inductive meta-reasoning
in Section 5.

3. Judgments and deductions

After designing the representation of terms and formulas, the next step is to encode
the axioms and inference rules of the logic under consideration. There are several
styles of deductive systems which can be found in the literature. There is the ax-
iomatic style (originated by Frege [1879] and in its modern form by Hilbert and
Bernays [1934]) where a logical system is given by axioms and a minimal number of
inference rules. Gentzen [1935] developed natural deduction in which the meaning of
each logical symbol is explained by means of its introduction and elimination rules.
Natural deductions were developed to model mathematical reasoning practices more
closely than axiomatic derivations while still remaining completely formal. Gentzen
also introduced sequent calculi in which certain properties of derivations (such as
the subformula property) are explicit. Sequent calculi form the basis of many proof
search procedures today. Yet another style of presentation is based on category
theory [Lambek and Scott 1986].

Logical frameworks are typically designed to deal particularly well with some
of these systems, while being less appropriate for others. The Automath languages
were designed to reflect and promote good informal mathematical practice. It should
thus be no surprise that they were particularly well-suited to systems of natural
deduction. The same is true for hereditary Harrop formulas and the LF type theory,
so we discuss the problem of representing natural deduction first. We return to
axiomatic systems in Section 3.5. Other systems, including sequent calculi, can also
be directly encoded [Pfenning 1995, Pfenning 2000].

3.1. Parametric and hypothetical judgments

First, we introduce some terminology used in the presentation of deductive systems
introduced with their modern meaning by Martin-Löf [Martin-Löf 1985a]. We will
generally interpret the notions as formal and syntactic, rather than semantic, since
we would like to tie them closely to logical frameworks and their implementations. A
judgment is defined by inference rules. An inference rule has zero or more premises
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and a conclusion; an axiom is an inference rule with no premises. A judgment is
evident or derivable if it can be deduced using the given rules of inference. Most
inference rules are schematic in that they contain meta-variables. We obtain in-
stances of a schematic rule by replacing meta-variables with concrete expressions
of the appropriate syntactic category. Each instance of an inference rule may be
used in derivations. We write D :: J or

D
J

when D is a derivation of judgment J . All derivations we consider must be finite.
Natural deduction further employs hypothetical judgments. We write

u
J1

...

J2

to express that judgment J2 is derivable under hypothesis J1 labelled u, where the
vertical dots may be filled by a hypothetical derivation. Hypotheses have scope,
that is, they may be discharged so that they are not available outside a given sub-
derivation. We annotate the discharging inference with the label of the hypothesis.
The meaning of a hypothetical judgment can be explained by substitution: We can
substitute an arbitrary deduction E :: J1 for each occurrence of a hypothesis J1

labelled u in D :: J2 and obtain a derivation of J2 that no longer depends on u. We
write this substitution as [E/u]D :: J2. For this to be meaningful we assume that
multiple occurrences of a label annotate the same hypothesis, and that hypotheses
satisfy the structural properties of exchange (the order in which hypotheses are
made is irrelevant), weakening (a hypothesis need not be used) and contraction (a
hypothesis may be used more than once).

An important related concept is that of a parametric judgment. Evidence for a
judgment J that is parametric in a variable a is given by a derivation D :: J that
may contain free occurrences of a. We refer to the variable a as a parameter and
use a and b to range over parameters. We can substitute an arbitrary object O
of the appropriate syntactic category for a throughout D to obtain a deduction
[O/a]D :: [O/a]J . Parameters also have scope and their discharge is indicated by a
superscript as for hypothesis labels.

3.2. Natural deduction

Natural deduction is defined via a single judgment

`N A formula A is true

and the mechanisms of hypothetical and parametric deductions explained in the
previous section.



Logical frameworks 15

In natural deduction each logical symbol is characterized by its introduction rule
or rules which specify how to infer a conjunction, disjunction, implication, univer-
sal quantification, etc. The elimination rule or rules for the connective then specify
how we can use a conjunction, disjunction, etc. Underlying the formulation of the
introduction and elimination rules is the principle of orthogonality : each connective
should be characterized purely by its rules, and the rules should only use judg-
mental notions and not other logical connectives. Furthermore, the introduction
and elimination rules for a logical connective cannot be chosen freely—as explained
below, they should match up in order to form a coherent system. We call these
conditions local soundness and local completeness.

Local soundness expresses that we should not be able to gain information by
introducing a connective and immediately eliminating it. That is, if we introduce
and then eliminate a connective we should be able to reach the same judgment
without this detour. We show that this is possible by exhibiting a local reduction
on derivations. The existence of a local reduction shows that the elimination rules
are not too strong—they are locally sound.

Local completeness expresses that we should not lose information by introducing
a connective. That is, given a judgment there is some way to eliminate its principal
connective and then re-introduce it to arrive at the original judgment. We show
that this is possible by exhibiting a local expansion on derivations. The existence
of a local expansion shows that the elimination rules are not too weak—they are
locally complete.

Under the Curry-Howard isomorphism between proofs and programs [Howard
1980], local reduction correspond to β-reduction and local expansion corresponds
to η-expansion. We express local reductions and expansions via judgments which
relate derivations of the same judgment.

D
`N A =⇒R

D′

`N A D locally reduces to D′

D
`N A =⇒E

D′

`N A D locally expands to D′

In the framework of partial inductive definitions [Hallnäs 1991] when used as a
meta-logic [Hallnäs 1987, Schroeder-Heister 1991, Eriksson 1992, Eriksson 1993b,
Eriksson 1993a, Eriksson 1994] the specification of introduction rules for a con-
nective automatically leads to the proper elimination rules by virtue of general
properties of the framework. We do not presuppose such a mechanism, but explic-
itly describe both introduction and elimination rules. In the spirit of orthogonality,
we proceed connective by connective, discussing introduction and elimination rules
and local reductions and expansions.
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Implication. To derive `N A ⊃ B we assume `N A to derive `N B. Written as a
hypothetical judgment:

u
`N A

...

`N B
⊃Iu

`N A ⊃B
The hypothetical derivation describes a construction by which we can transform a
derivation of `N A into a derivation of `N B. This is accomplished by substituting
the derivation of `N A for every use of the hypothesis `N A labelled u in the
derivation of `N B. The elimination rule expresses just that: if we have a derivation
of `N A⊃B and also a derivation of `N A, then we can obtain a derivation of `N B.

`N A⊃B `N A
⊃E

`N B

The local reduction carries out the substitution of derivations explained above.

u
`N A
D
`N B

⊃Iu

`N A ⊃B
E
`N A

⊃E
`N B

=⇒R

E
u

`N A
D
`N B

The derivation on the right depends on all the hypotheses of E and D except u,
for which we have substituted E . The reduction described above may significantly
increase the overall size of the derivation, since the deduction E is substituted for
each occurrence of the assumption labeled u in D and may therefore be replicated.

Local expansion is specified in a similar manner.

D
`N A ⊃B

=⇒E

D
`N A⊃ B

u
`N A

⊃E
`N B

⊃Iu

`N A⊃ B

Here, u must be a new label, that is, it cannot already be used in D.

Negation. In order to derive `N ¬A we assume `N A and try to derive a contra-
diction. This is the usual formulation, but has the disadvantage that it requires
falsehood (⊥) as a logical symbol, thereby violating the orthogonality principle.
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Thus, in intuitionistic logic, one ordinarily thinks of ¬A as an abbreviation for
A ⊃ ⊥. An alternative rule sometimes proposed assumes `N A and tries to derive
`N B and `N ¬B for some B. This also breaks the usual pattern by requiring the

logical symbol we are trying to define (¬) in a premise of the introduction rule.
However, there is another possibility to explain the meaning of negation without
recourse to implication or falsehood. We specify that `N ¬A should be derivable
if we can conclude `N p for any formula p from the assumption `N A. In other
words, the deduction of the premise is hypothetical in the assumption `N A and
parametric in the formula p.

u
`N A

...

`N p
¬Ip,u

`N ¬A
`N ¬A `N A

¬E
`N C

According to our intuition, the parametric judgment should be derivable if we
can substitute an arbitrary concrete formula C for the parameter p and obtain
a valid derivation. Thus, p may not already occur in the conclusion ¬A, or in
any undischarged hypothesis. The reduction rule for negation follows from this
interpretation and is analogous to the reduction for implication.

u
`N A
D
`N p

¬Ip,u

`N ¬A
E
`N A

¬E
`N C

=⇒R

E
u

`N A
[C/p]D
`N C

The local expansion is also similar to that for implication.

D
`N ¬A

=⇒E

D
`N ¬A

u
`N A

¬E
`N p

¬Ip,u

`N ¬A

Universal quantification. Under which circumstances should we be able to derive
`N ∀x. A? This clearly depends on the domain of quantification. For example, if we

know that x ranges over the natural numbers, then we can conclude `N ∀x. A if
we can derive `N [0/x]A, `N [1/x]A, etc. Such a rule is not effective, since it has
infinitely many premises. Thus one usually uses induction principles as inference
rules. However, in a general treatment of predicate logic we would like to prove
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statements which are true for all domains of quantification. Thus we can only say
that `N ∀x. A should be derivable if `N [a/x]A is derivable for an arbitrary new
parameter a. Conversely, if we know `N ∀x. A, we know that `N [t/x]A for any term
t.

`N [a/x]A
∀Ia

`N ∀x. A
`N ∀x. A

∀E
`N [t/x]A

The superscript a is a reminder about the proviso for the introduction rule: the pa-
rameter a must be “new”, that is, it may not occur in any undischarged hypothesis
in the derivation of [a/x]A or in ∀x. A itself. In other words, the derivation of the
premise is parametric in a. If we know that `N [a/x]A is derivable for an arbitrary
a, we can conclude that `N [t/x]A should be derivable for any term t. Thus we have
the reduction

D
`N [a/x]A

∀Ia
`N ∀x. A

∀E
`N [t/x]A

=⇒R
[t/a]D
`N [t/x]A

Here, [t/a]D is our notation for the result of substituting t for the parameter a
throughout the deduction D. For this to be sensible, we must know that a does not
already occur in A, because otherwise the conclusion of [t/a]D would be [t/a][t/x]A.
Similarly, we would change the assumptions if a occurred free in any of the undis-
charged hypotheses. This might render a larger derivation incorrect. As an example,
consider the judgment `N ∀x. ∀y. p(x)⊃ p(y) which should clearly not be derivable
for an arbitrary predicate p. The following is not a deduction of this judgment.

u
`N P (a)

∀Ia?
`N ∀x. P (x)

∀E
`N P (b)

⊃Iu

`N P (a)⊃ P (b)
∀Ib

`N ∀y. P (a)⊃ P (y)
∀Ia

`N ∀x. ∀y. P (x)⊃ P (y)

The flaw is at the inference marked with “?,” where a is free in the assumption
u. Applying a local proof reduction to the (incorrect) ∀I inference followed by ∀E
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leads to the assumption [b/a]P (a) which is equal to P (b). The resulting derivation

u
`N P (b)

⊃Iu

`N P (a)⊃ P (b)
∀Ib

`N ∀y. P (a)⊃ P (y)
∀Ia

`N ∀x. ∀y. P (x)⊃ P (y)

is once again incorrect since the hypothesis labelled u should be P (a), not P (b).
The local expansion just introduces and immediately discharges the parameter.

D
`N ∀x. A

=⇒E

D
`N ∀x. A

∀E
`N [a/x]A

∀Ia
`N ∀x. A

Classical logic. The inference rules so far only model intuitionistic logic, and some
classically true formulas such as Peirce’s law ((A ⊃ B) ⊃ A) ⊃ A (for arbitrary A
and B) or double negation (¬¬A)⊃A (for arbitrary A) are not derivable. There are
a number of equivalent ways to extend the system to full classical logic, typically
using negation (for example, the law of excluded middle, proof by contradiction, or
double negation elimination). In the fragment without disjunction or falsehood, we
might choose either a rule of double negation or proof by contradiction.

`N ¬¬A
dbneg

`N A

`N ¬A
...

`N A
contr

`N A

The rule for classical logic (whichever we choose to adopt) breaks the pattern of
introduction and elimination rules. One can still formulate some reductions for
classical derivations, but natural deduction is at heart an intuitionistic calculus.
The symmetries of classical logic are better exhibited in sequent calculi.

Here is a simple example of a natural deduction showing that `N A ⊃ ¬¬A is
derivable in intuitionistic logic. We attempt to show the process by which such a
deduction may have been generated, as well as the final deduction. The three vertical
dots indicate a gap in the derivation we are trying to construct, with hypotheses
shown above and the desired conclusion below the gap. A trace of this process when
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the search is carried out in a logical framework is given in Section 4.4.

...

`N A⊃¬¬A
;

u
`N A

...

`N ¬¬A
⊃Iu

`N A ⊃¬¬A

;

u
`N A

w
`N ¬A

...

`N p
¬Ip,w

`N ¬¬A
⊃Iu

`N A ⊃¬¬A

;

w
`N ¬A

u
`N A

¬E
`N p

¬Ip,w

`N ¬¬A
⊃Iu

`N A⊃ ¬¬A

The symbol A in this deduction stand for an arbitrary formula; we can thus view
the derivation above as parametric in A. In other words, every instance of this
derivation (replacing A by an arbitrary formula) is a valid derivation.

Below is a summary of the rules of intuitionistic natural deduction. The use of
hypotheses is implicit in this formulation, using our understanding of hypothetical
judgments.

Introduction Rules Elimination Rules

u
`N A

...

`N B
⊃Iu

`N A ⊃B
`N A ⊃B `N A

⊃E
`N B

u
`N A

...

`N p
¬Ip,u

`N ¬A
`N ¬A `N A

¬E
`N C

`N [a/x]A
∀Ia

`N ∀x. A
`N ∀x. A

∀E
`N [t/x]A
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3.3. Representing derivability

There are several approaches to the representation of natural deductions in logi-
cal frameworks. We can introduce a predicate nd such that nd(pAq) holds in the
meta-logic if and only if `N A has a derivation. This does not require an explicit
representation of natural deductions as objects in the meta-language. Another pos-
sibility is to introduce an explicit representation for natural deductions and encode
the property “D is a deduction of `N A”.

We first consider the encoding of derivability via axioms in a meta-logic. In order
to take advantage of higher-order abstract syntax in the representation, we need to
go beyond Horn clauses as introduced in Section 2.1. An appropriate language is the
language of hereditary Harrop formulas [Miller et al. 1991] which form the basis
both of the logic programming language λProlog [λProlog 1997] and the generic
theorem prover Isabelle [Isabelle 1998]. Variations of this approach to encoding
derivability have been devised by Paulson [1986] and Felty and Miller [1988, 1989].
Quantifiers in the meta-logic have type labels and range over simply-typed λ-terms.
Since it is unnecessary for our purposes, we exclude quantification over formulas
in the meta-logic and omit some logical connectives that are easily definable. The
meta-variable A ranges here over simple types as in Section 6 and should not be
confused with the formulas of first-order logic in the preceding section.

Hereditary Harrop formulas H ::= P | > | H1 ∧H2 | H1 ⊃H2 | ∀x:A.H

There are two important differences to Horn logic: the addition of types so that
quantifiers now range over simply-typed λ-terms, and the generalization which al-
lows the body of clauses to contain implications and universal quantifications (so-
called embedded implication and embedded universal quantification). On this frag-
ment classical and intuitionistic logic diverge, so it is crucial that the meta-logic is
intuitionistic. A theory T is a collection of closed hereditary Harrop formulas.

T `HH H theory T intuitionistically entails proposition H

The extension to allow embedded implications also means that theories consisting
of hereditary Harrop formulas no longer constitute inductive definitions the way
Horn clauses do.

Derivability by natural deductions is represented by a predicate nd on represen-
tations of formulas, that is, meta-level terms of type o. The inference rules are then
translated into meta-level axioms concerning the predicate nd. For example, the
rule ⊃E is implemented by

∀A:o. ∀B:o. (nd (impAB) ∧ ndA)⊃ ndB

In order to represent hypothetical judgments we take advantage of embedded impli-
cation. This is correct only because the meta-logic is intuitionistic and a complete
strategy for proving a formula H1⊃H2 is to prove H2 under assumption H1. Using
this fact, one can prove that the following axiom is an adequate representation of
the ⊃I rule.
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∀A:o. ∀B:o. (ndA⊃ ndB) ⊃ nd (impAB)

For parametric judgments we can use a similar encoding with embedded universal
quantification. We state the remaining rules here for completeness; the same idea
is employed in the type-theoretic treatment in Section 3.4 and explained there in
detail.

∀A:o. (∀p:o. nd(A) ⊃ nd(p)) ⊃ nd(¬A)

∀A:o. nd(¬A)⊃ ∀C:o. (nd(A) ⊃ nd(C))

∀A:i→ o. (∀x:i. nd (Ax)) ⊃ nd (forall (λx:i. Ax))

∀A:i→ o. nd (forall (λx:i. Ax))⊃ (∀x:i. nd (Ax))

We summarize the representation principle in the phrase judgments-as-propositions:
judgments of the object language (e.g., `N A) are represented by a proposition in the
meta-logic (e.g., nd(pAq)). The adequacy theorem of this representation is rather
direct. We refer to the theory consisting of the type declarations and the six axioms
above as ND .

3.1. Theorem (Adequacy).

ND `HH nd(pAq) iff `N A

In order to prove this theorem, we need to generalize it to account for hypothetical
judgments. One possible form employs meta-level implication.

ND `HH nd(pA1q)⊃ · · · ⊃ nd(pAnq)⊃ nd(pAq) iff

u1

`N A1 · · ·
un

`N An
...

`N A

Another form, given for the related type-theoretic interpretation in the next section,
directly uses hypothetical reasoning in the meta-language.

3.4. Deductions as objects

If we have a general reasoning tool for hereditary Harrop formulas we can now
reason in intuitionistic logic by using the axioms in the theory ND , and in classi-
cal logic if we assume an additional axiom modelling double negation elimination.
Isabelle [Isabelle 1998, Nipkow and Paulson 1992] is such a general tool. Proof
search can be programmed externally by using a language of tactics and tacti-
cals to construct derivations using these axioms and derived rules of inference.
The meta-programming language in this case is ML, whose type system together
with a correct implementation of hereditary Harrop formulas guarantees that only
well-formed meta-derivations can be constructed. More on this style of reasoning
with the aid of a logical framework implementation can be found in Section 4. As
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mentioned above, this is an implementation of derivability and explicit deductions
need never be constructed. If they are maintained, they are only an internal data
structure.

There are many circumstances where we are interested in deductions as explicit
objects. For example, we may want to extract functional programs from construc-
tive (or even classical) derivations. Or we may want to implement proof trans-
formation and presentation tools in a theorem proving environment. If we do not
trust a complex theorem prover, we may construct it so that it generates proof
objects which can be independently verified. In the architecture of proof-carrying
code [Necula 1997], deductions represented in LF are attached to mobile code to
certify safety (see Section 8.2). Another class of applications is the implementation
of the meta-theory of the deductive systems under consideration. For example, we
may want to show that natural deductions and axiomatic derivations define the
same theorems and exhibit translations between them (see Sections 5.2 and 5.4).

The simply-typed λ-calculus, which we used to represent the terms and formulas
of first-order logic, is also a good starting point for the representation of natural
deductions. As we will see below we need to refine it further in order to allow an
internal validity condition for deductions. This leads us to λΠ, the dependently
typed λ-calculus underlying the LF logical framework [Harper et al. 1993].

We begin by introducing a new type nd of natural deductions instead of the
predicate introduced in the previous section. An inference rule is a constant function
from deductions of the premises to a deduction of the conclusion. For example,

impe : nd→ nd→ nd

might be used to represent implication elimination. A hypothetical deduction is
represented as a function from a derivation of the hypothesis to a derivation of the
conclusion.

impi : (nd→ nd)→ nd

One can clearly see that this representation requires an external validity condition
since it does not carry the information about the conclusion of a derivation. For
example, we have

` impi (λu:nd. impeu u) ⇑ nd

but this term does not represent a valid natural deduction. An external validity
predicate can be specified using hereditary Harrop formulas and is executable in
λProlog [Felty and Miller 1988, Felty 1989]. However, it is dynamic (rather than
static) and not prima facie decidable. Furthermore, during search external mecha-
nisms must be put into place in order to prevent invalid deductions. This is related
to the problem of invalid tactics in ML/LCF [Gordon, Milner and Wadsworth 1979].
Through data abstraction, tactics are guaranteed to generate only valid deductions,
but the type system cannot enforce that they have the expected conclusion.

Fortunately, it is possible to refine the simply-typed λ-calculus so that validity of
the representation of derivations becomes an internal property, without destroying
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the decidability of the type system. This is achieved by introducing indexed types.
Consider the following encoding of the elimination rule for implication.

impe : nd (impAB)→ ndA→ ndB

In this specification, nd (impAB) is a type, the type representing derivations of
A ⊃ B. Thus we speak of the judgments-as-types principle. The type family nd is
indexed by objects of type o.

nd : o→ type

We call o → type a kind . Secondly, we have to consider the status of the free
variables A and B in the declaration. Intuitively, impe represents a whole family of
constants, one for each choice of A and B. Schematic declarations like the one given
above are desirable in practice, but they lead to an undecidable type checking prob-
lem [Dowek 1993]. We can recover decidability by viewing A and B as additional
arguments in the representation of ⊃E. Thus impe has four arguments representing
A, B, a derivation of A ⊃ B and a derivation of A. It returns a derivation of B.
With the usual function type constructor we could only write

impe : o→ o→ nd (impAB)→ ndA→ ndB.

This does not express the dependencies between the first two arguments and the
types of the remaining arguments. Thus we name the first two arguments A and
B, respectively, and write

impe : ΠA:o.ΠB:o. nd (impAB) → ndA→ ndB.

This is a closed type, since the dependent function type constructor Π binds the
following variable. From the consideration above we can see that the typing rule
for application of a function with dependent type should be

Γ Σ̀ M : Πx:A.B Γ Σ̀ N : A
app

Γ Σ̀ M N : [N/x]B

For example, given a variable p:o we have

p:o Σ̀ impe (not p) p : nd (imp (not p) p)→ nd (not p)→ nd p

where the signature Σ contains the declarations for formulas and inferences rules
developed above. The counterexample impi (λu:ndA. impe u u) from above is now
no longer well-typed: the instance of A would have to be of the form A1⊃A2 (first
occurrence of u) and simultaneously be equal to A1 (second occurrence of u). This
is clearly impossible. The rule for λ-abstraction does not change much from the
simply-typed calculus.

Γ Σ̀ A : type Γ, x:A Σ̀ M : B
lam

Γ Σ̀ λx:A.M : Πx:A.B
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The variable x may now appear free in B, whereas without dependencies it could
only occur free in M . From these two rules it can be seen that the rules for Πx:A.B
specialize to the rules for A→ B if x does not occur in B. Thus A→ B is generally
considered a derived notation that stands for Πx:A.B for a variable x not free in
B.

Dependent types further create the need for a rule of type conversion. This is
required, for example, in the representation of ∀I below. We take a brief excursion
into the realm of functional programming to illustrate the nature of dependent
types and the need for type conversion. Consider a type family vector indexed by a
natural number representing its length. Then concatenation of vectors would have
type

concat : Πn:nat.Πm:nat. vectorn→ vectorm→ vector (n+m).

Using the inference rules for application we find

concat 2 3 [1, 2] [1, 3, 5] : vector(2 + 3), and

concat 3 2 [1, 2, 1] [3, 5] : vector(3 + 2).

Since both expressions compute to the same value, namely

[1, 2, 1, 3, 5] : vector(5),

we would expect that in a sensible type system all three expressions would have
the same type. Evidently they do not, unless we identify the types vector(2 + 3),
vector(3 + 2), and vector(5). All of them represent the type of vectors of length
5, so identifying them makes sense intuitively. In general, we add a rule of type
conversion that allows us to apply definitional equalities in a type.

Γ Σ̀ M : A Γ Σ̀ A ≡ B : type
conv

Γ Σ̀ M : B

The example above also shows that adding dependent types to a functional lan-
guage can quickly lead to an undecidable type checking problem, since we need to
compare expressions in the program language for equality (which is undecidable
in general). The LF type theory contains no recursion at the level of objects and
type-checking remains decidable since definitional equality remains decidable. This
is an important illustration of the design principle that the framework should be
as weak as possible. Adding recursion, while it may occasionally seem desirable,
can easily destroy decidability of definitional equality and therefore typing. In an
undecidable type system, validity of the representations for deductions then would
no longer be a static, internal property.

A full complement of rules for the λΠ type theory is given in Section 7. A version
with a weaker notion of definitional equality is given in Chapter XXII.

With dependent function types, we can now give a representation for natural
deductions with an internal validity condition. This is summarized in Theorem 3.2
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below. We first introduce a type family nd that is indexed by a formula. The LF
type nd pAq is intended to represent the type of natural deductions of the formula
A.

nd : o→ type

Each inference rule is represented by an LF constant which can be thought of
as a function from a derivation of the premises of the rule to a derivation of the
conclusion. The constant further depends on the schematic variables that occur in
the specification of the inference rule.

Implication. The introduction rule for implication employs a hypothetical judg-
ment. The derivation of the hypothetical judgment in the premise is represented as
a function which, when applied to a derivation of A, yields a derivation of B.

p
u

`N A
D
`N B

⊃Iu

`N A⊃B

q

= impi pAq pBq (λu:nd pAq. pDq)

The assumption A labelled by u which may be used in the derivation D is repre-
sented by the LF variable u which ranges over derivations of A.

p
u

`N A
q

= u

From this we can deduce the type of the impi constant.

impi : ΠA:o.ΠB:o. (ndA→ ndB)→ nd (impAB)

The elimination rule is simpler, since it does not involve a hypothetical judgment.
The representation of a derivation ending in the elimination rule is defined by

p
D

`N A ⊃B
E
`N A

⊃E
`N B

q

= impe pAq pBq pDq pEq

where

impe : ΠA:o.ΠB:o. nd (imp A B) → nd A→ nd B.

As an example we consider a derivation of A⊃ (B ⊃A).

u
`N A

⊃Iw

`N B ⊃ A
⊃Iu

`N A ⊃ (B ⊃ A)
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Note that the assumption `N B labelled w is not used and therefore does not appear
in the derivation. This derivation is represented by the LF object

impi pAq (imp pBq pAq) (λu:nd pAq. impi pBq pAq (λw:nd pBq. u))

which has type
nd (imp pAq (imp pBq pAq)).

This example shows clearly some redundancies in the representation of the de-
duction (there are many occurrence of pAq and pBq). Fortunately, it is possible to
analyze the types of constructors and eliminate much of this redundancy through
term reconstruction [Pfenning 1991a, Necula and Lee 1998b]. Section 8.2 has some
additional brief remarks on this issue.

Negation. The introduction and elimination rules for negation and their represen-
tation follow the pattern of the rules for implication.

p
u

`N A
D
`N p

¬Ip,u

`N ¬A

q

= noti pAq (λp:o. λu:nd pAq. pDq)

The judgment of the premise is parametric in p and hypothetical in u. It is thus
represented as a function of two arguments, accepting both a formula p and a
deduction of A.

noti : ΠA:o. (Πp:o. nd A→ nd p)→ nd (not A)

The representation of negation elimination

p
D
`N ¬A

E
`N A

¬E
`N C

q

= note pAq pDq pCq pEq

leads to the following declaration

note : ΠA:o. nd (not A)→ ΠC:o. nd A→ nd C

This type just inverts the second argument and result of the noti constant, which
is the reason for the chosen argument order. Clearly,

note′ : ΠA:o.ΠC:o. nd (not A)→ nd A→ nd C

is an equivalent declaration.
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Universal quantification. Recall that p∀x. Aq = forall (λx:i. pAq) and that the
premise of the introduction rule is parametric in a.

p
D

`N [a/x]A
∀Ia

`N ∀x. A

q

= foralli (λx:i. pAq) (λa:i. pDq)

Note that pAq, the representation of A, has a free variable x which must be bound
in the meta-language, so that the representing object does not have a free variable
x. Similarly, the parameter a is bound at this inference and must be correspondingly
bound in the meta-language. The representation determines the type of the constant
foralli.

foralli : ΠA:i→ o. (Πa:i. nd (A a))→ nd (forall A)

In an application of this constant, the argument labelled A will be λx:i. pAq and
(A a) will be (λx:i. pAq) a which is equivalent to [a/x]pAq which in turn is equiva-
lent to p[a/x]Aq by the compositionality of the representation.

The elimination rule does not employ a hypothetical judgment.

p
D

`N ∀x. A
∀E

`N [t/x]A

q

= foralle (λx:i. pAq) pDq ptq

The substitution of t for x in A is representation by the application of the function
(λx:i. pAq) (the first argument to foralle) to ptq.

foralle : ΠA:i→ o. nd (forall A)→ Πt:i. nd (A t)

We now check that
p

D
`N ∀x. A

∀E
`N [t/x]A

q

: nd p[t/x]Aq,

assuming that pDq : nd p∀x. Aq. This is a part in the proof of adequacy of this
representation of natural deductions. At each step we verify that the arguments
have the expected type and compute the type of the application.

foralle : ΠA:i→ o. nd (forall A)→ Πt:i. nd (A t)

foralle (λx:i. pAq) : nd (forall (λx:i. pAq))→ Πt:i. nd ((λx:i. pAq) t)
foralle (λx:i. pAq) pDq : Πt:i. nd ((λx:i. pAq) t)

foralle (λx:i. pAq) pDq ptq : nd ((λx:i. pAq) ptq)
foralle (λx:i. pAq) pDq ptq : nd ([ptq/x]pAq)
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The last step follows by type conversion, noting that

(λx:i. pAq) ptq ≡ [ptq/x]pAq.

Furthermore, by the compositionality of the representation we have

[ptq/x]pAq= p[t/x]Aq

which yields the desired

foralle (λx:i. pAq) pDq ptq : nd (p[t/x]Aq).

The representation theorem relates canonical objects constructed in certain con-
texts to natural deductions. The restriction to canonical objects is once again cru-
cial, as are the restrictions on the form of the context. We call the signature con-
sisting of the declarations for first-order terms, formulas, and natural deductions
ND.

3.2. Theorem (Adequacy).

1. If D is a derivation of A from hypotheses `N A1, . . . , `N An labelled u1, . . . , un,
respectively, with all free individual parameters among a1, . . . , am and proposi-
tional parameters among p1, . . . , pk then

a1:i, . . . , am:i, p1:o, . . . , pk:o, u1:nd pA1q, . . . , un:nd pAnq ǸD pDq ⇑ nd pAq

2. If

a1:i, . . . , am:i, p1:o, . . . , pk:o, u1:nd pA1q, . . . , un:nd pAnq ǸD M ⇑ nd pAq

then M = pDq for a derivation D as in part 1.

3. The representation function is a bijection, and is compositional in the sense
that the following equalities hold.

p[t/a]Dq = [ptq/a]pDq
p[C/p]Dq = [pCq/p]pDq
p[E/u]Dq = [pEq/u]pDq

Proof. The proof proceeds by induction on the structure of natural deductions
one direction and on the definition of canonical forms in the other direction.

Each of the rules that may be added to obtain classical logic can be easily repre-
sented with the techniques from above. They are left as an exercise to the reader.

We summarize the LF encoding of natural deductions. We make a few cosmetic
changes which reflect common practice in the use of logical frameworks. The first
is the use of infix and prefix notation for logical connectives. According to our con-
ventions, implication is right associative, and negation is a prefix operator binding
more tightly than implication.
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i : type.
o : type.
imp : o → o → o.
not : o → o.
forall : (i → o) → o.

The second simplification in the concrete presentation is to omit some Π-
quantifiers. Free variables in a declaration are then interpreted as a schematic vari-
ables whose quantifiers remain implicit. The types of such free variables must be
determined from the context in which they appear. In practical implementations
such as Twelf [Pfenning and Schürmann 1998b, Pfenning and Schürmann 1998c],
type reconstruction will issue an error message if the type of free variables is am-
biguous.

nd : o → type.
impi : (nd A → nd B) → nd (A imp B).
impe : nd (A imp B) → nd A → nd B.
noti : (Πp:o. nd A → nd p) → nd (not A).

note : nd (not A) → (ΠC:o. nd A → nd C).
foralli : (Πa:i. nd (A a)) → nd (forall A).

foralle : nd (forall A) → (ΠT:i. nd (A T)).

When constants with implicitly quantified types are used, arguments correspond-
ing to the omitted quantifiers are also left implicit. Again, in practical implemen-
tations these arguments are inferred from context. For example, the constant impi
now appears to take only two arguments (of type ndA and ndB for some A and
B) rather than four, like the fully explicit declaration

impi : ΠA:o.ΠB:o. (ndA→ ndB)→ nd (A impB).

The derivation of A⊃ (B ⊃ A) from above has this very concise representation:

impi (λu:nd A. impi (λv:nd B. u)) : nd (A imp (B imp A)).

In summary, the basic representation principle underlying LF is the represen-
tation of judgments as types. A deduction of a judgment J is represented as a
canonical object M whose type is the representation of J . This basic scheme is
extended to represent hypothetical judgments as simple function types and para-
metric judgments as dependent function types. This encoding reduces the question
of validity for a derivation to the question of well-typedness for its representation.
Since type-checking in the LF type theory is decidable, the validity of derivations
has been internalized as a decidable property in the logical framework.

3.5. An axiomatic formulation

A second important style of deductive system is axiomatic: rather than explaining
the meaning of quantifiers and connectives by inference rules, we use mostly axiom
schemas and as few inference rules as possible. The following is the system H1-IQC
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[Troelstra and van Dalen 1988]. It consists of the following axiom schemas, and the
two rules of inference below.

`A A⊃ (B ⊃A) (K)

`A (A ⊃ (B ⊃C)) ⊃ ((A ⊃B) ⊃ (A⊃ C)) (S)

`A (A ⊃¬B) ⊃ ((A ⊃B) ⊃ ¬A) (N1)

`A ¬A⊃ (A⊃ B) (N2)

`A (∀x. A)⊃ [t/x]A (F1)

`A (∀x. (B ⊃ A))⊃ (B ⊃ ∀x. A) (F2)∗

with the proviso that x must not be free in B in the rule (F2). The two rules of
inference are modus ponens MP and universal generalization UG.

`A A⊃ B `A A
MP

`A B

`A [a/x]A
UGa

`A ∀x. A

The universal generalization rule carries the proviso that a must be a new param-
eter, that is, may not already occur in A. The representation of the propositional
axioms and modus ponens is straightforward, following the ideas in the representa-
tion of natural deduction. We introduce a type family hil for axiomatic deductions,
indexed by the conclusion of the derivation. In order to improve readability, we use
infix notation for implication. Also, we have chosen constant names in lower case
so that the presentation of the translations in Section 5.2 will be easier to read.

hil : o → type.
k : hil (A imp B imp A).

s : hil ((A imp B imp C) imp (A imp B) imp A imp C).
n1 : hil ((A imp not B) imp (A imp B) imp not A).

n2 : hil (not A imp A imp B).

For rule (F1) we need to implement substitution, which is done as usual in higher-
order abstract syntax by application, here of A to T.

f1 : ΠT:i. hil (forall (λx:i. A x) imp A T).

For the rule (F2) we must capture the side-condition that x is not free in the
antecedent of the implication. The following achieves this directly.

f2 : hil (forall (λx:i. B imp A x) imp B imp forall (λx:i. A x)).

Since substitution in the meta-language will rename bound variables to avoid vari-
able capture, we cannot instantiate B in this declaration with an object that con-
tains a free occurrence of x (x would be renamed). Thus, using higher-order abstract
syntax, one can concisely represent simple variable occurrence conditions. The rules
of inference are isomorphic to ones we have seen for natural deduction.

mp : hil (A imp B) → hil A → hil B.
ug : (Πa:i. hil (A a)) → hil (forall (λx:i. A x)).

The adequacy theorem for axiomatic derivations is straightforward and left to
the reader.
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3.6. Higher-level judgments

Next we turn to the local reduction judgment for natural deductions introduced in
Section 3.2.

D
`N A

=⇒R
D′
`N A

Recall that this judgment witnesses the local soundness of the elimination rules
with respect to the introduction rules. We refer to this as a higher-level judgment
since it relates derivations. The representation techniques underlying LF support
this directly, since deductions are represented as objects which can in turn index
type families representing higher-level judgments.

In this particular example, reduction is defined only by axioms, one each for im-
plication, negation, and universal quantification. The representing type family in
LF must be indexed by the representation of two deductions D and D′, and conse-
quently also by the representation of A. This shows that there may be dependencies
between indices to a type family so that we need a dependent constructor Π for
kinds in order to represent judgments relating derivations.

=⇒R : ΠA:o. nd A→ nd A→ type.

As in the representation of inference rules in Sections 3.4 and 3.5, we omit the
explicit quantifier on A and determine A from context.

=⇒R : nd A → nd A → type.

We show the representation of the reduction rules for each connective in turn,
writing =⇒R as an infix constant.

Implication. This reduction involves a substitution of a derivation for an assump-
tion.

u
`N A
D
`N B

⊃Iu

`N A ⊃B
E
`N A

⊃E
`N B

=⇒R

E
u

`N A
D
`N B

The representation of the left-hand side is

impe (impi (λu:nd A. D u)) E

where E = pEq : ndA and D = (λu:nd pAq. pDq) : ndA→ ndB. The derivation on
the right-hand side can be written more succinctly as [E/u]D. Compositionality of
the representation (Theorem 3.2, part 3) and β-conversion in LF yield

p[E/u]Dq = [pEq/u]pDq≡ (λu:nd pAq. pDq) pEq.

Thus the representation of the right-hand side will be definitionally equal to DE
and we can formulate the rule concisely as
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redl imp : impe (impi (λu:nd A. D u)) E =⇒R D E.

Negation. This is similar to implication. The required substitution of C for p in D
is implemented by application and β-reduction at the meta-level.

u
`N A
D
`N p

¬Ip,u

`N ¬A
E
`N A

¬E
`N C

=⇒R

E
u

`N A
[C/p]D
`N C

redl not : note (noti (λp:o. λu:nd A. D p u)) C E =⇒R D C E.

Universal quantification. The universal introduction rule involves a parametric
judgment. Consequently, the substitution to be carried out during reduction re-
places a parameter by a term.

D
`N [a/x]A

∀Ia
`N ∀x. A

∀E
`N [t/x]A

=⇒R
[t/a]D
`N [t/x]A

In the representation we once again exploit the compositionality.

p[t/a]Dq = [ptq/a]pDq≡ (λa:i. pDq) ptq

This gives rise to the declaration

redl forall : foralle (foralli (λa:i. D a)) T =⇒R D T.

The adequacy theorem states that canonical LF objects of type pDq =⇒R pD′q
constructed over the appropriate signature and in an appropriate parameter context
are in bijective correspondence with derivations of D =⇒R D′. We leave the precise
formulation and simple proof to the diligent reader.

The encoding of the local expansions employs the same techniques. We summarize
it below without going into further detail.

=⇒E : nd A → nd A → type.
expl imp : ΠD:nd (A imp B).D =⇒E impi (λu:nd A.impe D u).
expl not : ΠD:nd (not A).D =⇒E noti (λp:o.λu:nd A.note D p u).
expl forall : ΠD:nd (forall (λx:i.A x)).D =⇒E foralli (λa:i.foralle D a).

In summary, the representation of higher-level judgments continues to follow the
judgments-as-types technique. The expressions related by higher-level judgments are
now deductions and therefore dependently typed in the representation. Substitution
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at the level of deductions is implemented by β-reduction at the meta-level, taking
advantage of the compositionality of the representation. Further examples of higher-
level judgments can be found in Section 5.

4. Meta-programming and proof search

An important motivation underlying the development of logical frameworks is to
factor the effort required to build a theorem proving environment for specific logics.
The idea is to build one generic environment for deriving judgments in the logical
framework and use this for particular logical systems whose judgments are specified
in the framework. Each logic is still likely to require a significant amount of devel-
opment, but the goal is to reduce this effort as much as possible. Furthermore, by
offering a high-level notation for the judgments of an object logic, one can increase
the confidence in the correctness of an implementation, especially if the framework
offers a notation for derivations independent of proof search. The practical evidence
gathered through many experiments with Isabelle in a variety of logics indicates
that this is indeed feasible and fruitful.

This raises two related questions: which are the common concepts in theorem
proving shared among different logics, and how do we perform search in the logical
framework? We concentrate on the latter question in the hope that the almost
universal applicability of the ideas becomes apparent.

4.1. Sequent calculus

Many forms of proof search are based on sequent calculi. A sequent generally has
the form J =⇒ J where J is a context of available labelled hypotheses u1 ::
J1, . . . , un :: Jn and J is the judgment we are trying to derive. This is just a less
cumbersome notation for hypothetical judgments as introduced in Section 3.1. We
refer to each Ji as an antecedent and J as the succedent of the sequent.

Fully automatic theorem proving for practically interesting logics is rarely feasi-
ble, so framework implementations such as Isabelle are based on partially automated
search. In this case, it is most intuitive to think of the construction of a derivation
as proceeding bottom-up, where a sequent J =⇒ J represents the goal of deriving
J from J . We describe the possible goal reductions in the form of inference rules for
the sequent judgment. Since this view of search is a shared feature between many
different logics, it is natural to base the generic search in the logical framework
on the same principle, thereby directly supporting this view for a variety of object
logics. The use of sequents for the top-down construction of derivations is the basis
of the inverse method discussed in Chapter IX.

We describe here a sequent calculus for LF. A substantially similar and slightly
simpler presentation can be given for hereditary Harrop formulas and related log-
ical frameworks. The formulation below is based on work by Pym and Wallen
[1990, 1991]. The presentation of LF motivated in Section 3.4 and summarized in
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Section 7 is highly economical in that the simple function type A → B is consid-
ered an abbreviation for a dependent function type Πx:A.B where x does not occur
in B. During search, however, these two are treated differently: A → B behaves
like an implication, while Πx:A.B behaves like a universal quantifier. Already in
the description of our representation technique we have informally distinguished
between them: A → B corresponded to a hypothetical judgment while Πx:A.B
corresponded to a parametric judgment. Our sequents have the form

Γ
LF
=⇒ M : A

where Γ is a context of parameter declarations and hypotheses and M is a proof
term for A. During search we think of Γ and A as given, while M is filled in when
a proof succeeds. We fix a signature Σ which encodes the expressions and inference
rules of the object language under consideration and omit it from the judgment
since it never changes. We maintain the following invariants:

1. ` Γ Ctx

2. Γ ` A : type

3. Γ `M : A

We use h to range over either a constant c declared in Σ or variable declared in Γ.
We have initial sequents and so-called right and left rules for each type constructor
(→ and Π).

Initial sequents. We have solved a goal if a hypothesis matches the succedent, mod-
ulo definitional equality.

h:A′ in Σ or Γ Γ ` A′ ≡ A : type
init

Γ
LF
=⇒ h : A

Hypothetical judgments. To derive the representation A → B of a hypothetical
judgment, we simply introduce a hypothesis A with a new label u.

Γ, u:A
LF
=⇒ M : B

→Ru
Γ

LF
=⇒ λu:A.M : A→ B

If we have an assumption A → B we are allowed to assume B if we can derive A.
The conclusion C does not change in this rule.

h:A→ B in Σ or Γ Γ
LF
=⇒M : A Γ, u:B

LF
=⇒ N : C

→Lu
Γ

LF
=⇒ [(hM)/u]N : C
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Parametric judgments. To derive the representation Πx:A.B of a parametric judg-
ment, we simply introduce a new parameter (for convenience also called x).

Γ, x:A
LF
=⇒M : B

ΠRx

Γ
LF
=⇒ λx:A.M : Πx:A.B

To use a parametric assumption Πx:A.B we instantiate x with an object of the
correct type.

h:Πx:A.B in Σ or Γ Γ `M ⇑ A Γ, u:[M/x]B
LF
=⇒ N : C

ΠLu

Γ
LF
=⇒ [(hM)/u]N : C

Note that we fall back on the ordinary typing judgment for LF to check that the
substitution term M is well-typed in the appropriate context. The calculus is stated
above is sound and complete, as shown by Pym and Wallen [1991]. As usual, we
assume a fixed valid signature Σ and that Γ is valid in Σ.

4.1. Theorem (Properties of LF sequent calculus).

1. If Γ
LF
=⇒M : A then Γ `M : A.

2. If Γ `M ⇑ A then Γ
LF
=⇒M : A.

Proof. The first property is easy to see by induction on the sequent derivation.
The second can be proved by induction on the definition of canonical forms, after
appropriate generalization for atomic forms (defined in Section 7).

We can sharpen this theorem if we restrict initial sequents to atomic types P . In

that case Γ
LF
=⇒ M : A implies that Γ ` M ⇑ A (see [Pinto and Dyckhoff 1998]).

The additional rule of Cut which is sometimes allowed in sequent calculi plays a
special role. It corresponds to the introduction of a lemma during proof search,
which is very difficult to automate. Its discussion is left to Section 4.5.

When constructing a sequent derivation upwards from the conclusion, one is
confronted with a variety of choices. In particular, we have to decide which rule to
apply and, for the left rules, which hypothesis to use. Usually one takes advantage
of additional properties of the logic to eliminate some of the choices. For example,
in the sequent calculus for LF the conclusion of →R is derivable if and only if the
premise is derivable. Therefore it is always safe to apply this rule when the succedent
has the form A→ B. Implementations of logical frameworks take advantage of such
inversion properties to eliminate non-determinism in search. However, some choices
clearly will always remain—they have to be addressed either via user interaction or
some form of meta-programming. This is the topic of the next section.
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4.2. Tactics and tacticals

In this section we address the question which choices arise during search within
a sequent calculus, and how the non-determinism inherent in these choices can be
resolved. We assume a meta-level control structure of so-called tactics and tacticals.
As a first approximation, a tactic transforms a partial proof structure with some
unproven leaf sequents to another, while a tactical is a (higher-order) function to
combine tactics to form more complex tactics. At the top level, the user can choose
which tactic to apply, and which unproven sequent to apply it to. We analyze the
structure of tactics and tacticals in more detail when discussing the kind of choices
they have to resolve.

Tactics and tacticals arose out of the LCF theorem proving effort [Gordon
et al. 1979, Paulson 1983] and are used in such diverse systems as HOL [Gordon and
Melham 1993], Nuprl [Nuprl 1999, Constable et al. 1986], Coq [Coq 1999, Paulin-
Mohring 1993], Isabelle [Isabelle 1998, Paulson 1994], and λProlog [λProlog 1997,
Nadathur and Miller 1988, Felty 1993]. In all but λProlog, they are programmed in
ML which was originally developed to support theorem proving for LCF. Correct-
ness for tactics is ensured dynamically through data abstraction. The basic idea is
that at the core of the implementation is an abstract type of Theorem with con-
structors which implement and check the correct application of the primitive rules
of inference for a judgment. Since the type is abstract, only the given rules can
be used, thereby reducing the correctness problem for a complex theorem proving
environment to the correctness of the implementation of the basic inference rules.

In a logical framework with dependent types the correctness of deductions may
instead be enforced by type-checking alone, as we have seen in Section 3.4. We
therefore skip more detailed discussion of the validation of tactics and consider how
they deal with choices that arise during search in a sequent calculus. In the ELAN
logical framework [ELAN 1998, Borovanský et al. 1998] the strategy language has
independent status, rather than being embedded in a general-purpose functional
language such as ML. Besides individual tactic combinators to address various
aspects of search, tactic languages provide general mechanism for composition of
tactics and iteration or recursion.

Conjunctive choice. A conjunctive choice arises when a sequent rule has several
premises. Each of these premises must be derived to derive the conclusion. The
→Lu rule has this character: to derive the judgment C we derive A, and also C
under the additional hypothesis B. A tactic can choose any unproven leaf from a
partial proof structure to work on, usually the leftmost pending sequent. Tactic
languages provide a tactical MAP such that MAP t is a tactic which applies t to all
pending sequents in turn. In an interactive setting the user can navigate between
unproven sequents.

Disjunctive choice. A disjunctive choice arises when there are several rules which
could be applied, or several different ways in which a particular rule might be
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applied. For example, in the→Lu rule we have to pick a hypothesis h:A→ B from
Σ or Γ when there may be several such assumptions. When tactics are employed
for proof search, this is handled by backtracking . A tactic may apply sequent rules
(from the bottom up) to reduce an unproven sequent, or it might fail. Failure for
a tactic to apply signals that an alternative should be tried for an earlier choice.
In the language of tacticals this is expressed with the ORELSE combinator. The
tactic t1 ORELSE t2 tries to apply t1 and returns its result if successful. If t1 fails
it tries to apply t2 instead and returns its result. In particular, if t2 also fails, then t1
ORELSE t2 fails. We refer to this as shallow backtracking because when t1 succeeds
the alternative t2 will never be reconsidered. We discuss deep backtracking below,
when we examine the interaction between disjunctive choice and meta-variables.

Universal choice. This arises, for example, in the ΠRa rule where we have to choose
a new parameter a. Since the only relevant criterion is that a is new, this does not
lead to any undesirable non-determinism: any new a suffices.

Existential choice. This arises when we have to pick a term as, for example, the
object M in the rule ΠL. Early implementations of tactics typically either guessed
a plausible term or required the user to supply it. Since there often are an infinite
number of choices, more recent implementations usually postpone a commitment
until further search uncovers information about which terms might lead to a suc-
cessful derivation. We achieve this postponement by using a place-holder X for M ,
called a meta-variable or logical variable. In order to guarantee soundness when
meta-variables are instantiated we record its type AX and the context ΓX which
contains the parameters which are allowed to occur in the instantiation term for
X. The latter constraint on X replaces Skolemization as used in classical first-order
theorem proving, which does not work for all object logics and would therefore be
a poor choice in a logical framework.

Postponed existential choices are resolved when initial sequents are reached.
Rather then check if a hypothesis matches the succedent modulo definitional equal-
ity, we have to decide if there is a way to instantiate the meta-variables in a hypoth-
esis and the succedent so that the resulting judgments are definitionally equal. This
problem is called unification and discussed in the Section 4.3 and in more detail in
Chapter XIV. The introduction of meta-variables into search also interacts strongly
with conjunctive and disjunctive choices, which we now revisit.

Conjunctive choice with meta-variables. Meta-variables may be shared among sev-
eral unproven leaf sequents. Since unification instantiates these variables globally
in a partial proof structure, the order in which unproven sequents are reduced is no
longer irrelevant. Tactics have to be aware of this interaction, although there are
no simple and general recipes.

Disjunctive choice with meta-variables. Deriving an unproven sequent often requires
a commitment to a particular instantiation for meta-variables as determined by uni-
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fication at the leaves. This commitment could make it impossible to derive another
sequent which shares some of the meta-variables. This means that even after suc-
cessfully deriving a particular sequent, we might have to reexamine the choices
made during this derivation in case another sequent turns out to be unprovable.
This leads to deep backtracking which revisits disjunctive choices even though an
alternative had previously been successful.

Under the simplified functional model for tactics introduced above, a tactic re-
turns either no result (it fails) or a single result (the new partial proof structure).
Deep backtracking requires that a tactic can return a potentially unbounded number
of alternatives, where zero alternatives indicate failure. This can be done by using
a lazily computed sequence of alternatives which can be incrementally expanded as
necessary during backtracking. The Isabelle logical framework implementation uses
this technique, since its meta-programming language ML is functional. In ELAN
the operator dk (for don’t know choose) achieves this behavior.

The λProlog and Elf implementations provide an alternative by using a logic
programming interpretation of the logical framework to program search. Since logic
programming inherently supports logical variables, unification, and deep backtrack-
ing, significantly less machinery is needed to implement tactics (see [Felty 1993]).
On the other hand, don’t-care non-determinism requires additional programming
or extra-logical constructs such as the cut operator “!”, since the operational in-
terpretation of logic programs is based on don’t-know non-determinism. We come
back to this in Section 4.4.

We use t1 THEN t2 to denote the sequential composition of tactics and REPEAT
t for the iterator which applies t until it fails and then returns the last result.
REPEAT t is an example of an unfailing tactic which always succeeds, though
subgoals may of course remain. The interaction of possibly failing and unfailing
tactics is one of the difficulties in tactic programming.

As a simple example, assume we have basic tactics Init, ArrowR, and PiR which
apply the rules init, →R and ΠR, respectively. Then the tactic

Right* = REPEAT (ArrowR ORELSE PiR ORELSE Init)

repeatedly applies the right rules to a sequent until the succedent is atomic. The
atomic goal is solved if it unifies with a hypothesis; otherwise it remains as a subgoal.
This tactic is safe, that is, if the original sequent is derivable, the resulting sequent
will still be derivable. Right* is safe, despite the fact that we use a committed choice
tactical ORELSE, since the right rules of the sequent calculus for λΠ are invertible:
the premise is derivable if and only if the conclusion is derivable. The interaction
of safe and unsafe tactics is another complicated aspect of tactic programming.

4.3. Unification and constraint simplification

As sketched above, unification is a central and indispensable mechanism in tradi-
tional first-order theorem provers and logic programming languages. It allows the
search algorithm to postpone existential choices until more information becomes
available about which instances may be useful. Most logical frameworks go beyond
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first-order terms in two ways: they employ types and they employ λ-abstraction.
Consequently, first-order unification is insufficient. In this section we briefly re-
view the aspects of higher-order unification most relevant to the practice of logical
frameworks. For more information see Chapter XIV.

One can identify the simply-typed λ-calculus (λ→) as motivated in Section 2.2
as an important base language. Fortunately, definitional equality (βη-conversion) is
decidable. On the other hand, the general unification problem is undecidable [Huet
1973] even for the second-order fragment [Goldfarb 1981], and most general unifiers
may not exist. To appreciate some of the problems of higher-order unification,
consider the equation

(λx:i. F (sx)) = (λx:i. s (F x))

where s:i → i is a constant, and F is a meta-variable we are trying to solve for.
Note that F itself may not contain free occurrences of x according to the definition
of capture avoiding substitution. There are infinitely many different solutions for
F , namely

(λy:i. s . . . (s y))

for any number of applications of s, including zero.
Despite the undecidability, Huet [1975] devised a practical algorithm for higher-

order pre-unification, a form of unification which postpones certain solvable equa-
tions instead of enumerating their solutions. The resulting semi-decision procedure
is non-deterministically complete, that is, if there is a unifier a less committed pre-
unifier can in principle always be found. Moreover, when used to compute multiple
solutions, it is guaranteed to enumerate non-redundant pre-unifiers to a given set
of equations. With the addition of a modified version of the occurs-check, it coin-
cides with first-order unification when called on first-order terms. Huet’s algorithm
has been used extensively in λProlog and Isabelle and generally seems to have
good computational properties. Both languages must therefore manage constraints
during search or execution of programs [Kirchner, Kirchner and Vittek 1993].

The practical success of Huet’s algorithm seemed to be in part due to the fact that
difficult, higher-order unification problems rarely arise in practice. An analysis of
this observation led Miller [1991] to discover higher-order patterns, a sublanguage of
the simply-typed λ-calculus with restricted variable occurrences. For this fragment,
most general unifiers exist. In fact, the theoretical complexity of this problem is
linear [Qian 1993], just as for first-order unification. Miller proposed it as the basis
for a lower-level language Lλ similar to λProlog, but one where unification does
not branch since only higher-order patterns are permitted as terms. An empirical
study of this restriction by Michaylov and Pfenning [1992, 1993] showed that most
dynamically arising unification problems lie within this fragment, while a static
restriction rules out some useful programming idioms.

The Elf language therefore makes no syntactic restriction to higher-order pat-
terns, nor does it use Huet’s algorithm for higher-order unification as generalized to
λΠ (discovered independently by Elliott [1989, 1990] and Pym [1990, 1992]). Instead,
it employs a constraint solving algorithm [Pfenning 1991a, Pfenning 1991b, Dowek,
Hardin, Kirchner and Pfenning 1996] where unification problems within the decid-
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able fragment proposed by Miller are solved directly, while all others (solvable or
not) are postponed as constraints. This can drastically reduce backtracking com-
pared to higher-order pre-unification and imposes no restrictions on variable oc-
currences. On the other hand, unsolvable constraints may remain until the end
of the computation, in which case the answer is conditional: Each solution to the
remaining constraints gives rise to a solution of the original equations, and each
solution to the original equations will be an instance of the remaining constraints.
In most practical applications, these somewhat weaker soundness and completeness
theorems are sufficient.

4.4. Logic programming

Logic programming offers a different approach to meta-programming in a log-
ical framework than ML or a separate strategy language. Rather than meta-
programming in a language in which the logical framework itself is implemented
(typically ML), we endow the logical framework with an operational interpretation
in the spirit of Prolog. It should be clear that a specification of a logic under this
approach does not automatically give rise to a theorem prover, but that theorem
provers may be programmed in the meta-language. Two frameworks to date have
pursued this approach: λProlog [λProlog 1997, Nadathur and Miller 1988], which
gives an operational interpretation of hereditary Harrop formulas, and Elf [Pfenning
and Schürmann 1998b, Pfenning 1994a], which gives an operational interpretation
to λΠ.

In logic programming the basic computational mechanism is proof search follow-
ing a specific search strategy. Since the search strategy is fixed, the computational
behavior of a program can be predicted and exploited by the programmer. This
predictability comes at the price of completeness: programs may never terminate
even if there is a proof. On the other hand, we are careful to preserve at least weak
completeness, which means that if search fails then no proof can exist. Thus we
can rely on success due to soundness and failure due to weak completeness, while
we have no information if the program does not terminate. This summarizes some
essential differences between logic programming and general theorem proving.

The idea of logical framework implementations such as λProlog and Elf is to
use the operational reading of specifications to implement algorithms for proof
search and related problems. In many cases, the original specification itself can
be used algorithmically. For example, a natural semantics specification of Mini-
ML [Hannan 1991, Michaylov and Pfenning 1991] can be used directly for evaluation
or type-checking, one of the original motivations for natural semantics [Kahn 1987,
Hannan 1993].

We base our operational understanding of logic programming on the sequent
calculus. The operational interpretation of a logical specification is based on two
principles: goal-directed search [Miller et al. 1991] and focusing [Andreoli 1992].
Goal-directed search expresses that we always first apply the right rules bottom-
up to derive a given sequent until the succedent is atomic. An atomic succedent
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should now result in an analogue to procedure call. This is achieved by focusing on
a particular hypothesis and applying a succession of left rules until it is atomic. If
it then happens to unify with the atomic succedent we next attempt to derive the
pending premises of the left rule; otherwise we fail and backtrack. In a slight abuse
of terminology we refer to derivations which are both goal-directed and focused as
uniform. If every derivable judgment has a uniform derivation we claim to have
an abstract logic programming language because search following this operational
specification will be sound and weakly complete.

We now specify uniform derivations more concretely, in the form of two mutually
recursive judgments for LF.

Γ
uni
=⇒ M : A A is uniformly derivable

Γ
uni
=⇒ u:A� N : P A immediately entails P

In these judgments, M and N are proof terms for A and P , respectively. In the
immediate entailment judgment, A is the hypothesis we have focused on and u its
label. When viewed operationally, we think of Γ, A and P as given, while M and
N are computed together with the derivation. We presuppose and maintain the
following invariants:

1. ` Γ Ctx in both judgments;

2. Γ ` A : type and

3. Γ `M : A for uniform derivability, and

4. Γ ` P : type and

5. Γ, u:A ` N : P for immediate entailment.

Actually, the restricted form of search guarantees a stronger invariant, namely that
M is always canonical and N always atomic.

Atomic judgments.

Γ ` Q ≡ P : type
init

Γ
uni
=⇒ u:Q� u : P

h:A in Σ or Γ Γ
uni
=⇒ u:A� N : P

callu

Γ
uni
=⇒ [h/u]N : P

Hypothetical judgments.

Γ, u:A
uni
=⇒ M : B

→Ru
Γ

uni
=⇒ λu:A.M : A→ B

Γ
uni
=⇒ u:B � N : C Γ

uni
=⇒ M : A

→Lu
Γ

uni
=⇒ w:A→ B � [(wM)/u]N : C
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Parametric judgments.

Γ, x:A
uni
=⇒M : B

ΠRx

Γ
uni
=⇒ λx:A.M : Πx:A.B

Γ `M ⇑ A Γ
uni
=⇒ u:[M/x]B� N : C

ΠLu

Γ
uni
=⇒ w:Πx:A.B� [(wM)/u]N : C

Uniform derivations are sound and complete with respect to sequent deriva-
tions. In fact, we can prove a stronger theorem that there is a bijection between

canonical objects M of a given type A and the objects such that
uni
=⇒ M : A

is derivable [Pfenning 1991a, Dyckhoff and Pinto 1994, Pfenning 2001, Pinto and
Dyckhoff 1998].

4.2. Theorem (Properties of LF uniform derivations).

1. If Γ
uni
=⇒M : A then Γ `M ⇑ A.

2. If Γ `M ⇑ A then Γ
uni
=⇒M : A.

Proof. The first property is easy to see by induction on the uniform derivation.
The second can be proved by induction on the definition of canonical forms, after
appropriate generalization for atomic forms (see [Pfenning 2001]). An alternative
proof examines the permutability of inference rules in the sequent calculus for LF
from Section 4.1.

We now revisit the remaining non-deterministic choices we examined in the dis-
cussion of tactics in Section 4.2.

Conjunctive choice. We always solve the subderivations in the multiple premise rule
→L from left to right. This means that when a hypothesis u:A→ (B → C) is used
to derive C, the first subgoal to be solved is B and the second A. If we rewrite the
same declaration with the arrows reversed, we obtain u : (C ← B)← A which lends
itself to a natural reading as a labelled program clause in logic programming. Using
the convention that “←” is left-associative, we can write this even more concisely as
u : C ← B ← A. It is important to derive the premises of→L in this order since we
do not want to solve subgoals until we know if the target type (C in the example)
matches the atomic goal. In Prolog terminology conjunctive choice is called subgoal
selection.

Disjunctive choice. We employ deep backtracking as indicated in Section 4.2. Since
only one inference rule applies to any sequent, disjunctive choices arise only in two
circumstances: we have to decide which constant or hypothesis to use for one of
the call rules, and unification may allow more than one possibility (see the notes
on existential choice below). We first try constants from first to last in the fixed



44 Frank Pfenning

signature Σ, then the parameters and hypotheses from Γ from right to left (the
most recently introduced hypothesis is tried first).

Universal choice. Just as before, we simply introduce new parameters or hypothesis
labels.

Existential choice. In the ΠL rule we introduce a fresh meta-variable X, record Γ
and A and proceed. When we try to complete a branch of the derivation with the
init rule, we use unification instead of equality. λProlog employs Huet’s unification
algorithms to enumerate pre-unifiers, while Elf uses constraint simplification based
on patterns [Dowek et al. 1996].

To illustrate uniform derivations we reconsider the example at the end of Sec-
tion 3.2 with its encoding in LF from Section 3.4. We omit the proof terms for the
sake of brevity.

· uni=⇒ ΠA:o. nd(A imp not notA)

ΠRA which leaves

A:o
uni
=⇒ nd(A imp not notA)

call with impi which leaves

A:o
uni
=⇒ (ΠA:o.ΠB:o. (nd(A)→ nd(B))→ nd(A impB))� nd(A imp not notA)

ΠL with A which leaves

A:o
uni
=⇒ (ΠB:o. (nd(A)→ nd(B))→ nd(A impB))� nd(A imp not notA)

ΠL with not notA which leaves

A:o
uni
=⇒ ((nd(A)→ nd(not notA))→ nd(A imp not notA))� nd(A imp not notA)

→L which leaves two subgoals

A:o
uni
=⇒ nd(A imp not notA)� nd(A imp not notA)

init which is solved, leaving one subgoal

A:o
uni
=⇒ nd(A)→ nd(not notA)

In the remainder we omit the immediate entailment steps.

A:o
uni
=⇒ nd(A)→ nd(not notA) →Ru

A:o, u:nd(A)
uni
=⇒ nd(not notA) call with noti

A:o, u:nd(A)
uni
=⇒ Πp:o. (nd(notA)→ nd(p)) ΠRp

A:o, u:nd(A), p:o
uni
=⇒ (nd(notA)→ nd(p)) →Rw

A:o, u:nd(A), p:o, w:nd(notA)
uni
=⇒ nd(p) call with note, leaving subgoals

A:o, u:nd(A), p:o, w:nd(notA)
uni
=⇒ nd(notA) call with w, solved, and

A:o, u:nd(A), p:o, w:nd(notA)
uni
=⇒ nd(A) call with u, solved

To compute the proof term we proceed through the sequents, assigning proof
terms at each step. At the root, this yields the sequent
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A:o
uni
=⇒ (impi (λu:nd A. noti (λp:o. λw:nd (not A). note w p u)))

: nd (A imp not not A).

There are some advantages and some disadvantages to the logic programming
approach to meta-programming. Perhaps the most important advantage is unifor-
mity of language for specification and implementation. Specific algorithms such a
evaluation, type inference, or certain theorem proving strategies can easily be im-
plemented at a very high level. On the other hand, the logic programming paradigm
does not lend itself very well to interactive theorem proving since the state of the
search and user commands are inherently imperative in nature. In λProlog this is
addressed with extra-logical constructs which augment the logical foundation, just
as Prolog extends Horn logic in numerous ways. Furthermore, the current state
of the art in implementation of λProlog is such that complex tactics or decision
procedures can be much faster in a functional meta-language. An ongoing effort
in compiler design and implementation might change this situation in the near
future [Nadathur and Mitchell 1999].

Elf remains pure and is therefore difficult to use for interactive theorem proving.
However the purity of the language has an important benefit, namely that we can
express proofs of meta-theorems to a certain extent. In particular, we can write
meta-programs in Elf which translate traces of a search algorithm written in Elf to
deductions as specified in LF. We will see an example for this kind of application
in the Section 5.

4.5. Theory development

In practical applications one is usually interested in more than just proving one
theorem, but in the development of a whole theory consisting of declarations, defi-
nitions, lemmas, and theorems. Moreover, theories are often organized into subthe-
ories related in a variety of ways.

At the most fundamental level, the logical framework calculus LF can be ex-
tended by global definitions of the form c:A = M or by local definitions in the form
let x:A = M in N . These can be viewed as either introducing syntactic abbrevia-
tions (if the type A represents a syntactic category) or introducing a derived rule
A with derivation M (if the type A represents a judgment). One can either view
such an extension as semantically completely transparent so that the let above is
treated as syntactic sugar for (λx:A.N)M , or one can introduce a new typing rule

Γ `M : A Γ, x:A ` N : C
let

Γ ` let x:A = M in N : C

and a new rule of definitional equality

let x:A = M in N ≡ [M/x]N.
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The canonical form theorem and decidability of type-checking continue to hold,
but the search operations underlying both tactics and logic programming are com-
plicated. The problem is that expansion of all definitions is rarely feasible, while
not expanding them jeopardizes weak completeness. A solution of this problem
for LF based on a simple form of strictness analysis is proposed in [Pfenning and
Schürmann 1998a].

In the sequent calculus, the introduction of a lemma into the derivation during
search corresponds to an application of the cut rule.

Γ
LF
=⇒M : A Γ, u : A

LF
=⇒ N : C

Cutu

Γ
LF
=⇒ let u:A = M in N : C

One could also choose the proof term [M/u]N in the conclusion in order to avoid
a language extension. The cut rule for LF is admissible, which means that any
instance of this rule can be eliminated from a derivation.

For further discussion of modularity mechanisms in logical frameworks, see Sec-
tion 8.1.

5. Representing meta-theory

Logical frameworks are designed to admit a direct and natural representation of
deductive systems at a very high level of abstraction. In Section 3 we showed that
checking the validity of a derivation can be reduced to type-checking in the frame-
work which is decidable. In Section 4 we indicated how generic ideas for proof
search in a logical framework can support theorem proving in particular logics,
and how a logic programming interpretation of a framework can be used for the
implementation of specific algorithms related to deductive systems.

This leaves the question if we can take advantage of the conciseness and elegance
of the encodings to also mechanize the meta-theory of deductive systems. For exam-
ple, we might want to prove that the natural deduction formulation of intuitionistic
logic in Section 3.2 and the axiomatic formulation in Section 3.5 have the same the-
orems. Other examples from the area of logic include admissibility of inference rules
such as cut in a sequent system, or the correctness of logical interpretations. In the
area of programming languages we think of properties such as type preservation,
correctness of type inference algorithms, or compiler correctness.

The answer is a qualified “yes”. Some frameworks such as FS0 are specifically de-
signed for meta-theoretic reasoning, but they give up techniques such as static proof
checking, higher-order abstract syntax, or hypothetical judgments as functions. As
we explain below, there are some difficulties with encodings utilizing higher-order
abstract syntax with a number of possible solutions. In many ways the potential of
logical frameworks for meta-theoretic reasoning has not yet been fully explored.

Just as we isolated the notions of variable binding, parametric, and hypothetical
judgments as central in the presentation of deductive systems, we should analyze
the proof techniques used to carry out the meta-theory of deductive systems and
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then consider how a framework might support them. By far the most common
proof technique is induction, both over the structure of expressions and derivations.
Thus one naturally looks towards frameworks that permit inductive definitions of
judgments and allow the corresponding induction principles. Unfortunately, there
is a conflict between induction and the representation techniques of higher-order
abstract syntax and functional representation of hypothetical judgments. The issue
is complicated further by dependent types, so we consider first the implicational
fragment of the simply-typed representation of deductions.

nd : type

impi : (nd→ nd)→ nd

impe : nd→ nd→ nd

Even if we considered the above signature as complete (rather than open-ended),
the type nd would not be inductively defined in the usual sense, because of the
negative occurrence of nd in the type of impi. Straightforward attempts to formulate
a valid induction principle for the type nd fail. Informally, at least one difficulty
is clear: when we try to prove a theorem about natural deductions, we invariably
have to generalize over all possible collection of hypotheses. Since they are not
represented explicitly in our technique, we cannot directly formulate the required
induction proofs. We consider an example below.

There is a further difficulty with induction in the framework which stems from
the essential open-endedness of representations. For example, assume we declare
constants z for zero and s for successor in the formulation of first-order logic, but we
do not assume an induction principle for natural numbers in our object logic. If the
framework permitted an induction principle over the representation type i, we would
no longer have an adequate encoding of first-order logic with two uninterpreted
function constants. The encoding of the universal introduction rule,

foralli : ΠA:i→ o. (Πa:i. nd (A a))→ nd (forall A)

now represents an ω-rule, since objects of type Πa:i. nd (A a) allow case analysis on
a and are therefore no longer necessarily parametric in a. Depending on the strength
of the induction principle in the meta-language we would be able to derive various
propositions in the object language that are not actually derivable in pure first-
order logic and the adequacy of the representation is destroyed. A similar problem
already arises at the level of syntax if we permit primitive recursion into the logical
framework.

Several options have been explored to escape this dilemma. The first is to reject
the notion of higher-order abstract syntax and use inductive representations di-
rectly (see, for example, [Matthews et al. 1993, Basin and Constable 1993, Feferman
1988, Magnusson and Nordström 1994]). This engenders a complication of the en-
coding and consequently of the meta-theory, which now has to deal with many
lemmas regarding variable naming. This can be alleviated by using de Bruijn in-
dices [de Bruijn 1972], yet formalizations are still substantially more complex than
informal proofs. There are many examples of formal developments along these lines.
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A second possibility is to relax the conditions on inductive definitions, which
leads to partial inductive definitions [Hallnäs 1991]. They allow inversion principles
but not a direct generalization of proofs by induction. Partial inductive definitions
have been used as the basis for a logical framework [Hallnäs 1987, Eriksson 1993a],
implemented in the Pi derivation editor [Eriksson 1994]. Their potential for formal-
izing meta-theory is currently being explored by McDowell and Miller [1997] (see
also [McDowell 1997]); more on their approach below.

A third option is to employ reflection with some restrictions to ensure sound-
ness. In [Despeyroux, Pfenning and Schürmann 1997] this was achieved by a
modal type operator satisfying the laws of S4. However, the practicality of
these and some related proposals [Despeyroux and Hirschowitz 1994, Despey-
roux, Felty and Hirschowitz 1995, Leleu 1998] has never been demonstrated. Dif-
ferent reflection mechanisms have been employed in the Calculus of Construc-
tion [Rueß 1996, Rueß 1997] and Nuprl [Allen, Constable, Howe and Aitken 1990].
These last two do not use higher-order abstract syntax.

A fourth option is to externalize the induction. This leads to a three-level architec-
ture: the object logic, the logical framework in which it is specified, and a meta-logic
for reasoning about the logical framework. Variations of this are currently pursued
by McDowell and Miller [1997] and Schürmann and Pfenning [1995, 1998]. In prin-
ciple, any meta-logic could be used for reasoning about the logical framework, but
the effort required to develop the theory of the framework and then apply it to
individual signatures would be prohibitive unless the meta-logic was specifically
designed for meta-theoretic reasoning. Briefly, the logic of McDowell and Miller is
based on definitional reflection [Schroeder-Heister 1993] and natural number in-
duction, while that of Schürmann and Pfenning admits only ∀∃ formulas where
the quantifiers range over closed LF objects and uses explicit termination order-
ings [Rohwedder and Pfenning 1996]. Recently, this approach has been generalized
by Schürmann [2000].

A more detailed discussion of such meta-logical frameworks is beyond the scope
of this chapter. In the next section we present another approach where the meta-
theory is only partially verified, but where the computational contents of the meta-
theoretic proofs is directly available for execution.

5.1. Relational meta-theory

As alluded to above, it is difficult to soundly extend the logical framework to include
induction. However, it is possible to encode the computational contents of proofs
of meta-theoretic properties in Elf and thereby partially verify them. Moreover,
they can be executed for a number of different purposes. The technique employs
higher-level judgments as introduced in Section 3.6.

As an example we consider the equivalence between natural deduction and ax-
iomatic formulations of the fragment of first-order logic introduced in Sections 3.2
and 3.5. In one direction this is expressed simply as:

If `A A then `N A.
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Recall that formulasA are represented as objects of type o, while derivations of `A A
are represented by objects of type hil pAq and derivations of `N A as objects of type
nd pAq. Expressed in a meta-logic for LF, we can use adequacy of the encodings to
reformulate the theorem.

For any LF objects A : o and H : hilA there exists an LF object D : ndA.

If we ignore the issues of parameters for the moment, the quantifiers range over
closed objects with respect to the signature that encodes natural and axiomatic
formulations of intuitionistic logic. From a constructive proof of this proposition
we can extract a function which maps a formula A and a derivation of `A A to a
deduction of `N A. If this function were representable in the logical framework, it
would have type

ΠA:o. hilA→ ndA.

Since the proof proceeds by induction over the structure of the axiomatic derivation
H of `A A, such a function would be defined by induction over its second argument—
something the framework does not allow. However, we can specify this function as
a higher-level judgment relating H and the natural deduction D. This higher-level
judgment is declared as a type family hilnd.

hilnd : ΠA:o. hilA→ ndA→ type

This relation can be specified in LF and executed as a logic program in Elf. Queries
have the form hilndAHD, where A and H are given closed objects of appropriate
type, while D is a free variable which will be computed during logic programming
search.

It is important to realize, however, that type-checking the signature declaring
hilnd does not guarantee the validity of the meta-theorem we were trying to prove.
For this, some additional conditions have to be satisfied: mode correctness which
expresses that the logic programming interpretation of hilnd respects the desired
input/output interpretation, termination which guarantees that each call of hilnd
of the form above terminates, and coverage which guarantees that for each possible
combination of input values a case in the definition of hilnd will be applicable. Some
aspects of this check are discussed in [Pfenning and Rohwedder 1992, Rohwedder
and Pfenning 1996].

A similar idea in the area of functional programming without the notion of higher-
order abstract syntax has been explored in the ALF system [Magnusson 1995, Mag-
nusson and Nordström 1994, Coquand and Smith 1993, Coquand, Nordström,
Smith and von Sydow 1994] and the Foetus system [Abel 1999]. The empirical
evidence suggests that this shortens developments considerably and allows the for-
mulations of functions in a manner which is closer to functional programming prac-
tice [Coquand 1992, Gaspes and Smith 1992, Magnusson 1993]. In these systems,
termination and coverage has also been externalized, rather than forcing adherence
to an inflexible schema of primitive recursion.
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5.2. Translating axiomatic derivations to natural deductions

In this section we illustrate the relational representation of proofs by relating deriva-
tions in the axiomatic system to natural deductions. As a first step we prove that
every axiomatic deduction may be transformed into a natural deduction.

5.1. Theorem. If `A A then `N A.

Proof. The proof proceeds by a simple structural induction over the derivation
H :: `A A. In each case we exhibit the corresponding natural deduction. Our
representation of this proof introduces a new judgment relating, for any formula
A, the Hilbert derivations of A to the natural deductions of A. This judgment is
represented by the type family

hilnd : hilA→ ndA→ type

where we have left a quantifier over A implicit as explained in Section 3.4.
As explained in the preceding section, this relation implements a total function
ΠA:o. hilA→ ndA which is not directly expressible in the framework.

Each case in the induction argument turns into a declaration of a corresponding
higher-level judgment.

Case:

H = K
`A A⊃ (B ⊃ A)

In this case we have to supply a natural deduction of `N A ⊃ (B ⊃ A), which we
have already seen at the end of Section 3.4. Recall that k implements the axiom K.

hnd k : hilnd k (impi (λu:nd A. impi (λv:nd B. u))).

Case:

H = S
`A (A⊃ (B ⊃C))⊃ ((A ⊃B) ⊃ (A⊃ C))

A natural deduction of the conclusion is

u
`N A⊃ (B ⊃C)

w
`N A

⊃E
`N B ⊃ C

v
`N A⊃ B

w
`N A

⊃E
`N B

⊃E
`N C

⊃Iw

`N A ⊃C
⊃Iv

`N (A⊃ B) ⊃ (A ⊃C)
⊃Iu

`N (A⊃ (B ⊃C))⊃ ((A⊃ B) ⊃ (A ⊃C))

This deduction can now be represented in LF by the usual method.
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hnd s :

hilnd s
(impi (λu:nd (A imp B imp C).

impi (λv:nd (A imp B).
impi (λw:nd A. impe (impe u w) (impe v w))))).

Case:

H = N1
`A (A⊃ ¬B)⊃ ((A⊃ B) ⊃ (¬A))

This is similar to the previous case.

u
`N A⊃ ¬B

w
`N A

⊃E
`N ¬B

v
`N A⊃ B

w
`N A

⊃E
`N B

¬E
`N p

¬Ip,w

`N ¬A
⊃Iv

`N (A⊃ B) ⊃¬A
⊃Iu

`N (A⊃ ¬B)⊃ ((A⊃ B) ⊃¬A)

In the formalization, the propositional parameter p appears as a bound variable.

hnd n1 :

hilnd n1

(impi (λu:nd (A imp not B).
impi (λv:nd (A imp B).

noti (λp:o. λw:nd A. note (impe u w) p (impe v w))))).

The remaining axioms are easy to prove, and we only show their encodings

hnd n2 :

hilnd n2 (impi (λu:nd (not A). impi (λv:nd A. note u B v))).
hnd f1 :

hilnd (f1 T) (impi (λu:nd (forall (λx:i. A x)). foralle u T)).
hnd f2 :

hilnd f2
(impi (λu:nd (forall (λx:i. B imp A x)).

impi (λv:nd B. foralli (λa:i. impe (foralle u a) v)))).

Case:

H =

H1

`A A⊃ B
H2

`A A
MP

`A B
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By induction hypothesis onH1 andH2 there exist natural deductions D1 :: `N A⊃B
and D2 :: `N A, respectively. Using the rule of implication elimination⊃E, we obtain

D =

D1

`N A⊃ B
D2

`N A
⊃E

`N B

In the representation we emphasize the operational reading of the implementation
by using the arrow that points to the left. It associates to the left, and therefore
A3 ← A2 ← A1 is equivalent to A1 → A2 → A3.

hnd mp : hilnd (mp H1 H2) (impe D1 D2)

← hilnd H1 D1

← hilnd H2 D2.

Note that hilnd H1 D1 will be the first subgoal to be solved, and hilnd H2 D2 the
second, according to the operational semantics sketched in Section 4.4.

Case:

H =

H1

`A [a/x]A
UGa

`A ∀x. A

This case corresponds directly to universal introduction (∀I) in natural deduction.
By induction hypothesis on H1 there exists a natural deduction D1 :: `N [a/x]A.
Since the deduction D1 is not hypothetical, the side condition on UG that a not
appear in A is sufficient to guarantee the corresponding side condition on ∀I and
we can form

D =

D1

`N [a/x]A
∀Ia

`N ∀x. A
In the representation, H1 is a function from a to a deduction of [a/x]A. Thus the
higher-level judgment relating H1 to D1 is parametric in a. Parametric judgments
are represented by functions as usual, so a dependent function type will appear in
the premise.

hnd ug : hilnd (ug H1) (foralli D1) ← (Πa:i. hilnd (H1 a) (D1 a)).

Operationally in Elf, solving the subgoal introduces a new parameter a and sub-
stitutes it for the variable bound in H1. The resulting deduction is translated to
a natural deduction that may contain a. Matching this against the pattern (D1 a)
creates the correct functional representation of the judgment that is hypothetical
in a, and which is the premise of ∀I and thus the argument to foralli.

The proof above describes a method for translating axiomatic derivations to
natural deductions. Under the Curry-Howard isomorphism [Howard 1980], this cor-
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responds to a translation from typed combinators (based on S and K and others)
to typed λ-terms. As a sample execution of this program, consider the query

hilnd (mp (mp s k) k) D

where D is a free variable of type nd (A impA). This will compute the following
instantiation for D, which is an indirect way of deriving `N A⊃ A.

impe
(impe

(impi
(λu:nd (A imp (B imp A) imp A).

impi
(λv:nd (A imp B imp A).

impi (λw:nd A. impe (impe u w)
(impe v w)))))

(impi (λu:nd A. impi (λv:nd (B imp A). u))))
(impi (λu:nd A. impi (λv:nd B. u))).

5.3. The deduction theorem

One crucial step in proving the other direction (natural deductions can be translated
to axiomatic derivations) is the deduction theorem. In its simplest form it concerns
a hypothetical derivation: if we can prove B assuming A (written as A `A B), then
we can derive `A A⊃ B. This is not quite enough for our application, since during
a natural deduction many hypotheses may arise. So we let ∆ range over collections
of hypotheses A1, . . . , An and write ∆ `A B. An implementation of a proof of the
deduction theorem using FS0 is described in [Basin and Matthews 1996] and may
be compared to the relational implementation below.

5.2. Theorem (Deduction Theorem). If ∆, A `A B then ∆ `A A⊃B.

Proof. The proof proceeds by induction on the structure of the derivation H ::
∆, A `A B. In the implementation of the proof the extraneous hypotheses ∆ will
be represented by hypotheses in LF and can therefore be left implicit in the main
judgment. Thus the proof is implemented as a higher-level judgment, relating the
representation of the hypothetical derivation of A `A B to the derivation of `A
A⊃B. Recall that a hypothetical derivation is represented as an LF function from
derivations of the hypothesis to derivations of the conclusion. Thus we arrive at the
type family

ded : (hil A → hil B) → hil (A imp B) → type

where A and B are implicitly quantified.

Case: H = ∆, A `A A, that is, H consists of a use of the hypothesis A. Then we need
to show that ∆ `A A ⊃ A. This follows by two applications of Modus Ponens from
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(S) and (K). Written in linear form instead of the more awkward tree we have

1 (A⊃ ((B ⊃A) ⊃A)) ⊃ ((A⊃ (B ⊃A)) ⊃ (A ⊃A)) S

2 (A⊃ ((B ⊃A) ⊃A)) K

3 (A⊃ (B ⊃A)) ⊃ (A ⊃A) MP 1 2

4 A⊃ (B ⊃A) K

5 A⊃ A MP 3 4

As an LF term, this is represented succinctly by mp (mp s k) k, a term already
familiar from the sample query at the end of the previous section. The LF func-
tion λu:hil A. u represents the immediate use of the hypothesis `A A, labelled
internally by u. Thus we have

ded id : ded (λu:hil A. u) (mp (mp s k) k).

Case: H = ∆, A `A Ai, where Ai occurs in ∆. In this case we have to give a
derivation of ∆ `A A ⊃ Ai. But this follows from an application of Modus Ponens
and K.

1 ∆ `A Ai ⊃ (A⊃ Ai) K

2 ∆ `A Ai (hyp)

3 ∆ `A A⊃ Ai MP 1 2

There is no corresponding case in the implementation of the type family ded. In-
stead, we need to make the assumption that the deduction theorem applied to a
new hypothesis labelled w yields mp k w wherever w is introduced. This technique
will be illustrated in the next section.

Case:

H = K
∆, A `A B1 ⊃ (B2 ⊃B1)

Then we proceed as follows:

1 ∆ `A (B1 ⊃ (B2 ⊃B1))⊃ (A⊃ (B1 ⊃ (B2 ⊃ B1))) K

2 ∆ `A B1 ⊃ (B2 ⊃B1) K

3 ∆ `A A⊃ (B1 ⊃ (B2 ⊃B1)) MP 1 2

ded k : ded (λu:hil A. k) (mp k k).

Cases: All remaining axioms (S, N1, N2, F1, F2) are handled as in the previous
case. We only show their implementations.

ded n1 : ded (λu:hil A. n1) (mp k n1).

ded n2 : ded (λu:hil A. n2) (mp k n2).

ded f1 : ded (λu:hil A. f1 T) (mp k (f1 T)).
ded f2 : ded (λu:hil A. f2) (mp k f2).
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Case:

H =

H1

∆, A `A B1 ⊃ B2

H2

∆, A `A B1

MP
∆, A `A B2

1 ∆ `A A⊃ (B1 ⊃ B2) Ind. hyp. on H1

2 ∆ `A (A⊃ (B1 ⊃ B2))⊃ ((A ⊃B1)⊃ (A ⊃B2)) S

3 ∆ `A (A⊃ B1)⊃ (A⊃ B2) MP 2 1

4 ∆ `A A⊃ B1 Ind. hyp. on H2

5 ∆ `A A⊃ B2 MP 3 4

Appeals to induction hypotheses are implemented in the premises of the higher
level judgment, generating H ′1 and H ′2, respectively. Note how the premises H1 and
H2 of H are once again hypothetical, that is, they may depend on the assumption
A. This is implemented as (H1 u) and (H2 u) in the declaration below.

ded mp :

ded (λu:hil A. mp (H1 u) (H2 u)) (mp (mp s H1
′) H2

′)
← ded H1 H1

′

← ded H2 H2
′.

Case:

H =

H1

∆, A `A [a/x]B1

UGa

∆, A `A ∀x. B1

1 ∆ `A A⊃ [a/x]B1 Ind. hyp. on H1

2 ∆ `A ∀x. (A⊃ B1) UGa 1

3 ∆ `A (∀x. (A⊃ B1)) ⊃ (A ⊃ ∀x. B1) F2

4 ∆ `A A⊃ ∀x. B1 MP 3 2

The side conditions on UGa and F2 are satisfied by virtue of the proviso that a not
occur in ∆, A, or ∀x. B1, that is, that H1 be parametric in a. In the implementation
we simply create a new parameter a.

ded ug :

ded (λu:hil A. ug (H1 u)) (mp f2 (ug H1
′))

← (Πa:i. ded (λu:hil A. H1 u a) (H1
′ a)).

The declarations for the higher-level judgment ded can be executed as a logic
program, thus capturing the computational contents of the deduction theorem. This
corresponds to the algorithm for bracket abstraction in combinatory logic [Curry
and Feys 1958].
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5.4. Translating natural deductions to axiomatic derivations

Obtaining a translation from natural deductions to axiomatic derivations is now
straightforward. Note that we must allow for hypotheses, since the ⊃I rule intro-
duces them (if viewed from the bottom up).

5.3. Theorem. If `N A follows from hypotheses `N A1, . . . , `N An, then there exists
a hypothetical axiomatic derivation of A1, . . . , An `A A.

Proof. By induction on D :: `N A. We abbreviate A1, . . . , An by ∆. In the imple-
mentation we deal with each hypothesis as it is introduced, rather than globally.
Thus the type family that implements the meta-proof just relates a natural deduc-
tion to a Hilbert derivation.

ndhil : ΠA:o. nd A → hil A → type.

Case:

D = ui
`N Ai

This constitutes application of an hypothesis. Then H is a one-step derivation
using the corresponding the hypothesis. It is implemented wherever hypotheses are
introduced, which are the cases for ⊃I and ¬I.

Case:

D =

u
`N A1

D1

`N A2

⊃Iu

`N A1 ⊃ A2

By induction hypothesis on D1, there exists a derivation H1 of ∆, A1 `A A2. Hence,
by the deduction theorem, there exists a derivation H′1 of ∆ `A A1 ⊃ A2, which is
what we needed to show. The implementation combines this and the previous case
by introducing hypotheses u:ndA1 and v:hilA1 and assuming that the translation
of u should be v. Since this rule introduces a new hypothesis `A A1, we must also
indicate how the deduction theorem behaves on the new assumption. This may be
gleaned from the second case in the proof of the deduction theorem.

ndh impi :

ndhil (impi D1) H1
′

← (Πu:nd A1. Πv:hil A1.

(ΠC:o. ded (λw:hil C. v) (mp k v))
→ ndhil u v
→ ndhil (D1 u) (H1 v))

← ded H1 H1
′.



Logical frameworks 57

Case:

D =

D1

`N ∀x. A1

∀E
`N [t/x]A1

By induction hypothesis on D1 there exists a derivation H1 of ∆ `A ∀x. A1. By
modus ponens from an instance of axiom schema F1 and H1 we can then construct
a derivation H of ∆ `A [t/x]A1.

ndh foralle : ndhil (foralle D1 T) (mp (f1 T) H1) ← ndhil D1 H1.

Cases: We omit the remaining cases which are similar to the two given above. It is
an instructive exercise to reconstruct the informal argument from the implementa-
tion given below.

ndh impe : ndhil (impe D1 D2) (mp H1 H2)

← ndhil D1 H1

← ndhil D2 H2.

ndh noti :

ndhil (noti D1) (mp (mp n1 H1
′) H1

′′)
← (Πp:o. Πu:nd A1. Πv:hil A1.

(ΠC:o. ded (λw:hil C. v) (mp k v))
→ ndhil u v
→ ndhil (D1 p u) (H1 p v))

← ded (H1 (not A)) H1
′

← ded (H1 A) H1
′′.

ndh note : ndhil (note D1 C D2) (mp (mp n2 H1) H2)

← ndhil D1 H1

← ndhil D2 H2.

ndh foralli : ndhil (foralli D1) (ug H1)

← (Πa:i. ndhil (D1 a) (H1 a)).

In summary, we can represent some aspects of constructive meta-theoretic proofs
as higher-level judgments in LF. These higher-level judgments can be executed in
Elf with the operational semantics from Section 4.4 to translate derivations between
deductive systems. While the result of each individual computation of this form is
guaranteed to be correct, the higher-level judgment is only partially verified since
termination and coverage of all possible cases are properties outside the scope of
the type-checker.

6. Appendix: the simply-typed λ-calculus

For the representation of the abstract syntax of a language, the simply-typed λ-
calculus (λ→) is usually adequate. When we tackle the task of representing inference
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rules, we will have to refine the type system by adding dependent types. The reader
should bear in mind that λ→ should not be considered as a functional programming
language, but as a representation language. In particular, the absence of recursion
will be crucial in order to guarantee adequacy of representations. Our formulation of
the simply-typed λ-calculus has two levels: the level of types and the level of objects,
where types classify objects. Furthermore, we have signatures which declare type
and object constants, and contexts which assign types to variables. The presentation
is in the style of Church: Every valid object has a unique type. This requires that
types appear in the syntax of objects to resolve the inherent ambiguity of certain
functions such as the identity function. We let a range over type constants, c over
object constants, x over variables.

Types A ::= a | A1 → A2

Objects M ::= c | x | λx:A.M |M1 M2

Signatures Σ ::= · | Σ, a:type | Σ, c:A
Contexts Γ ::= · | Γ, x:A

We make the general restriction that constants and variables can occur at most
once in a signature or context, respectively. We use A andB to range over types, and
M and N to range over objects. We refer to type constants a as atomic types and
types of the form A→ B as function types. We also consider terms that differ only
in the names of their bound variables as identical and use the variable convention
as for first-order logic in Section 2.

The judgments defining λ→ are

Σ̀ A : type A is a valid type

Γ Σ̀ M : A M is a valid object of type A in context Γ

Σ̀ Γ Ctx Γ is a valid context

` Σ Sig Σ is a valid signature

Note that the first three of these judgments depend on a signature Σ which we
presuppose to be valid. Similarly, we assume that Γ is always valid in the judgment
Γ Σ̀ M : A. The judgments are defined via the following inference rules.

Valid objects

c:A in Σ
con

Γ Σ̀ c : A

x:A in Γ
var

Γ Σ̀ x : A

Σ̀ A : type Γ, x:A Σ̀ M : B
lam

Γ Σ̀ λx:A.M : A→ B

Γ Σ̀ M : A→ B Γ Σ̀ N : A
app

Γ Σ̀ M N : B
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Valid types

a:type in Σ
con

Σ̀ a : type

Σ̀ A : type Σ̀ B : type
arrow

Σ̀ A→ B : type

Valid signatures

sigemp
` · Sig

` Σ Sig
sigtyp

` Σ, a:type Sig

` Σ Sig Σ̀ A : type
sigobj

` Σ, c:A Sig

Valid contexts

ctxemp
Σ̀ · Ctx

Σ̀ Γ Ctx Σ̀ A : type
ctxobj

Σ̀ Γ, x:A Ctx

The rules for valid objects are somewhat non-standard in that they contain no
check whether the signature Σ or the context Γ are valid, which we presuppose.
Furthermore, the rules guarantee that if we have a derivation D of Γ Σ̀ M : A and
Γ is valid, then every context appearing in D is also valid. This is because the type
A in the lam rule is checked for validity as it is added to the context.

Our formulation of the simply-typed λ-calculus above is parameterized by a sig-
nature in which new constants can be declared; only variables, λ-abstraction, and
application are built into the language itself. The analogue of observable values in
functional programming languages is the notion of canonical form, since they are
in one-one correspondence with the data we are trying to represent. Unlike in func-
tional languages, every well-typed object will have an equivalent canonical form
which can be calculated with a simple algorithm. For the definition of canonical
forms as a deductive system we need two mutually recursive judgments: canonical
and atomic forms. For the sake of brevity, we elide the fixed signature Σ from this
judgment.

Γ `M ⇑ A object M is canonical of type A

Γ `M ↓ A object M is atomic of type A

An atomic form is a variable or constant applied to some number of arguments,
each of which is in canonical form. A canonical form of functional type must be
a λ-abstraction; a canonical form of atomic type a must itself be atomic. This is
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captured with the following inference rules.

Γ, x:A `M ⇑ B
arrow

Γ ` λx:A.M ⇑ A→ B

Γ `M ↓ a
coerce

Γ `M ⇑ a

x:A in Γ
var

Γ ` x ↓ A
c:A in Σ

con
Γ ` c ↓ A

Γ `M ↓ B → A Γ ` N ⇑ B
app

Γ `M N ↓ A

The algorithm for conversion to canonical and atomic forms introduces λ-
abstractions if the object is of functional type, essentially applying η-expansion.
At base type we check if the object has the form of a variable or constant applied
to some arguments. If so, we convert the arguments to canonical form. If not, we
repeatedly apply weak head reduction until the other case applies. This method
of definition of a typed λ-calculus corresponds to an operational semantics for a
functional language and is very much in the spirit of the method of algorithmic
definition for type theories [de Bruijn 1993]. Related systems have been described
in [Felty and Miller 1990, Coquand 1991]. The algorithm is given as a deductive
system consisting of three judgments which may be interpreted as a logic program.

M
whr−→ M ′ M weak head reduces to M ′

Γ `M ⇑M ′ : A M converts to canonical form M ′ at type A

Γ `M ↓ M ′ : A M converts to atomic form M ′ at type A

First, the rules for weak head reduction. We write [N/x]M for the result of substi-
tuting N for x in M , possibly renaming bound variables to avoid variable capture.

whr beta
(λx:A.M)N

whr−→ [N/x]M

M
whr−→M ′

whr app

M N
whr−→M ′N

The rules for conversion to canonical and atomic form mutually depend on each
other. Note how the rules for canonical form are type-directed, while the rules for
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atomic form are object-directed.

Γ, x:A `M x ⇑M ′ : B
arrow

Γ `M ⇑ (λx:A.M ′) : A→ B

M
whr−→M ′ Γ `M ′ ⇑M ′′ : a

whr
Γ `M ⇑M ′′ : a

Γ `M ↓ M ′ : a
coerce

Γ `M ⇑M ′ : a

x:A in Γ
var

Γ ` x ↓ x : A

c:A in Σ
con

Γ ` c ↓ c : A

Γ `M ↓M ′ : A→ B Γ ` N ⇑ N ′ : A
app

Γ `M N ↓M ′N ′ : B

The following properties of the simply-typed λ-calculus follow easily from known
results for more conventional representations. The last is the most difficult and can
be established rather elegantly using logical relations [Pfenning 2001].

6.1. Theorem (Properties of λ→).

1. If Γ `M ⇑ A then Γ `M : A.

2. If Γ `M ↓ A then Γ `M : A.

3. If Γ `M ⇑M ′ : A then Γ `M ′ ⇑ A.

4. If Γ `M ↓M ′ : A then Γ `M ′ ↓ A.

5. If Γ `M : A then there exists a unique N such that Γ `M ⇑ N : A.

Two objects M and M ′ are definitionally equal at type A (written as Γ ` M ≡
M ′ : A) if they have the same canonical form at type A. This coincides with a
notion of definitional equality based on β- and η-conversions. In particular, β- and
η-conversion are admissible rules of inference to determine definitional equality of
objects. We may omit the context, signature, and type and just write M ≡ M ′.
Systems are often defined based on a notion of conversion, in which case the system
above could be considered as specifying an algorithm for deciding equality. The
next section provides an example of this kind.

7. Appendix: the dependently typed λ-calculus

The typing rules for LF can be found under the name λP in Chapter XXII, except
that the rule of type conversion for LF is based on βη-conversion rather than just β-
conversion. Because βη-conversion is not confluent on ill-typed terms, the standard
approach to proving theoretical properties does not work in the context of LF, even
though it may be adapted with some effort [Geuvers 1992, Ghani 1997, Goguen
1999].



62 Frank Pfenning

We prefer a formulation with typed equality judgments in the style of Martin-
Löf [Harper 1988] as presented in a slightly richer framework [Coquand 1991]. We
call the resulting type theory λΠ. First we define its basic judgments, which in-
clude typing and definitional equality. Coquand [1991] proves the the correctness of
an untyped algorithm for conversion which demonstrates decidability of the judg-
ments defining LF. From this one can conclude easily that canonical (that is, long
βη-normal) forms exist and are unique, which is critical for the adequacy theo-
rems throughout this chapter. An alternative proof using an erasure interpretation
for dependencies is given by Harper and Pfenning [2000]. We give an inductive
definition of canonical forms which can be used directly in adequacy proofs to es-
tablish a compositional bijections between canonical objects of λΠ and expressions
or deductions in an object logic. This part is analogous to the development for
the simply-typed λ-calculus in the preceding section. We also have eliminated the
non-dependent function type A→ B since we can think of it as an abbreviation for
Πx:A.B where x does not occur in B.
λΠ is predicative calculus with three levels: kinds, families, and objects. We also

define signatures and contexts as they are needed for the judgments.

Kinds K ::= type | Πx:A.K

Families A ::= a | A M | Πx:A1. A2

Objects M ::= c | x | λx:A.M |M1 M2

Signatures Σ ::= · | Σ, a:K | Σ, c:A
Contexts Γ ::= · | Γ, x:A

Besides the typed notion of equality, this language differs from the one given by
Harper et al. [1993] in that we do not allow families to be formed by explicit ab-
straction. Since such families never occur in canonical forms, this does not lead to
any loss in expressive power. Unlike in λ→, we can no longer introduce typing inde-
pendently of definitional equality, because of the rule of type conversion motivated
in Section 3.4.

Γ Σ̀ M : A M has type A

Γ Σ̀ M ≡M ′ : A M is definitionally equal to M ′ at type A

Γ Σ̀ A : K A has kind K

Γ Σ̀ A ≡ A′ : K A is definitionally equal to A′ at kind K

Γ Σ̀ K : kind K is a valid kind

Γ Σ̀ K ≡ K′ : kind K is definitionally equal to K′

` Σ Sig Σ is a valid signature

Σ̀ Γ Ctx Γ is a valid context

These judgment are defined by the rules given below. For the typing and equality
judgments we presuppose that the signature Σ and the context Γ are valid, so we
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do not check this in the rules for variables and constants. Furthermore, we do not
have an explicit rule for η-conversion, since it, together with a congruence rule for
λ-abstraction, is equivalent to the extensionality rule eq lam for functional equality.

Valid objects

Γ Σ̀ A : type Γ, x:A Σ̀ M : B
lam

Γ Σ̀ λx:A.M : Πx:A.B

Γ Σ̀ A : type Γ, x:A Σ̀ M x ≡M ′ x : B
eq lam

Γ Σ̀ M ≡M ′ : Πx:A.B

c:A in Σ
con

Γ Σ̀ c : A

x:A in Γ
var

Γ Σ̀ x : A

Γ Σ̀ M : Πx:A.B Γ Σ̀ N : A
app

Γ Σ̀ M N : [N/x]B

Γ Σ̀ M ≡M ′ : Πx:A.B Γ Σ̀ N ≡ N ′ : A
eq app

Γ Σ̀ MN ≡M ′N ′ : [N/x]B

Γ, x:A Σ̀ M : B Γ Σ̀ N : A
beta

Γ Σ̀ (λx:A.M)N ≡ [N/x]M : [N/x]B

Valid types

Γ Σ̀ A : type Γ, x:A Σ̀ B : type
pi

Γ Σ̀ Πx:A.B : type

Γ Σ̀ A ≡ A′ : type Γ, x:A Σ̀ B ≡ B′ : type
eq pi

Γ Σ̀ Πx:A.B ≡ Πx:A′. B′ : type

a:K in Σ
con

Γ Σ̀ a : K

Γ Σ̀ A : Πx:B.K Γ Σ̀ M : B
app

Γ Σ̀ AM : [M/x]K

Γ Σ̀ A ≡ A′ : Πx:B.K Γ Σ̀ M ≡M ′ : B
eq app

Γ Σ̀ AM ≡ A′M ′ : [M/x]K
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Valid kinds

type
Γ Σ̀ type : kind

Γ Σ̀ A : type Γ, x:A Σ̀ K : kind
pi

Γ Σ̀ Πx:A.K : kind

Γ Σ̀ A ≡ A′ : type Γ, x:A Σ̀ K ≡ K′ : kind
eq pi

Γ Σ̀ Πx:A.K ≡ Πx:A′. K′ : kind

Equality rules. We present the equality rules for all three levels in abbreviated
form, where U , V , and W range over objects, types, kinds, or the symbol kind as
appropriate for the equality judgments shown above.

Γ Σ̀ U : V
refl

Γ Σ̀ U ≡ U : V

Γ Σ̀ U1 ≡ U2 : V
sym

Γ Σ̀ U2 ≡ U1 : V

Γ Σ̀ U1 ≡ U2 : V Γ Σ̀ U2 ≡ U3 : V
trans

Γ Σ̀ U1 ≡ U3 : V

Γ Σ̀ U : V Γ Σ̀ V ≡ V ′ : W
conv

Γ Σ̀ U : V ′

Γ Σ̀ U1 ≡ U2 : V Γ Σ̀ V ≡ V ′ : W
eq conv

Γ Σ̀ U1 ≡ U2 : V ′

Valid signatures

sigemp
` · Sig

` Σ Sig Σ̀ K : kind
sigfam

` Σ, a:K Sig

` Σ Sig Σ̀ A : type
sigobj

` Σ, c:A Sig

Valid contexts

ctxemp
Σ̀ · Ctx

Σ̀ Γ Ctx Γ Σ̀ A : type
ctxobj

Σ̀ Γ, x:A Ctx

We can obtain the decidability of the judgments constituting this formulation
of LF via a sequence of lemmas culminating in an argument via Kripke-logical
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relations and an untyped algorithm for testing equality as given by Coquand [1991].
The version of this theorem for β-conversion only (where the eq lam rule is replaced
by a congruence rule for λ-abstraction) is due to Harper et al. [1993].

7.1. Theorem (Properties of LF).

1. If Γ1, x:A, y:B,Γ2 Σ̀ M : C and Γ1 Σ̀ B : type then Γ1, y:B, x:A,Γ2 Σ̀ M : C.

2. If Γ Σ̀ M : C and Γ Σ̀ A : type then Γ, x:A Σ̀ M : C.

3. If Γ1, x:A,Γ2 Σ̀ M : C and Γ1 Σ̀ N : A
then Γ1, [N/x]Γ2 Σ̀ [N/x]M : [N/x]C.

4. All judgments defining the λΠ type theory are decidable.

We single out the properties of exchange, weakening, and substitution, since
they are at the core of the judgments-as-types representation technique. Note that
contraction is a simple consequence of substitution in our formulation. Paramet-
ric and hypothetical judgments can be implemented as functions in λΠ because
these properties match the properties of hypotheses. Logics such as linear logic in
which assumptions do not satisfy these properties must be represented with differ-
ent techniques. This has led, for example, to the development of the linear logical
framework [Cervesato and Pfenning 1996] which provides more control over prop-
erties of assumptions.

We continue by presenting the notions of canonical and atomic form as a judg-
ment, generalizing the analogous judgments from the simply-typed λ-calculus in
Section 6.

Γ Σ̀ M ⇑ A M is canonical of type A

Γ Σ̀ M ↓ A M is atomic of type A

Γ Σ̀ A ⇑ K A is canonical of kind K

Γ Σ̀ A ↓ K A is atomic of kind K

These judgments are defined via the following inference rules. We use P for a
base type, that is, one which has the form aM1 . . .Mn rather than Πx:A.B.

Canonical objects

Γ Σ̀ A ⇑ type Γ, x:A Σ̀ M ⇑ B Γ Σ̀ A ≡ A′ : type
pi

Γ Σ̀ λx:A.M ⇑ Πx:A′. B

Γ Σ̀ M ↓ P Γ Σ̀ P ≡ P ′ : type
coerce

Γ Σ̀ M ⇑ P ′
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Atomic objects

c:A in Σ
con

Γ Σ̀ c ↓ A
x:A in Γ

var
Γ Σ̀ x ↓ A

Γ Σ̀ M ↓ Πx:A.B Γ Σ̀ N ⇑ A
atmapp

Γ Σ̀ M N ↓ [N/x]B

Canonical types

Γ Σ̀ A ⇑ type Γ, x:A Σ̀ B ⇑ type
pi

Γ Σ̀ Πx:A.B ⇑ type

Γ Σ̀ P ↓ type
coerce

Γ Σ̀ P ⇑ type

Atomic types

a:K in Σ
con

Γ Σ̀ a ↓ K

Γ Σ̀ A ↓ Πx:B.K Γ Σ̀ M ⇑ B
app

Γ Σ̀ A M ↓ [M/x]K

It is easy to see that canonical forms are well-typed.

7.2. Theorem (Properties of canonical forms).

1. If Γ Σ̀ M ⇑ A then Γ Σ̀ M : A.

2. If Γ Σ̀ M ↓ A then Γ Σ̀ M : A.

3. If Γ Σ̀ A ⇑ K then Γ Σ̀ A : K.

4. If Γ Σ̀ A ↓ K then Γ Σ̀ A : K.

Proof. By straightforward induction on the structure of the canonical and atomic
forms.

Finally we come to algorithms for conversion to canonical form. They are designed
so that two terms are definitionally equal if they have the same canonical form.

M
whr−→M ′ M weak head reduces to M ′

Γ Σ̀ M ⇑M ′ : A M has canonical form M ′ at type A

Γ Σ̀ M ↓ M ′ : A′ M has atomic form M ′ at type A′

Γ Σ̀ A ⇑ A′ : K A has canonical form A′ at kind K

Γ Σ̀ A ↓ A′ : K′ A has atomic form A′ at kind K′
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To read these judgments as algorithms we apply the logic programming interpre-
tation of these rules for the bottom-up construction of a derivation. In weak head
reduction we assume that M is given and M ′ is constructed. In the judgments for
conversion to canonical form we assume that Σ, Γ, M , A, and K are given while
we construct M ′ and A′. In the judgments for atomic forms we assume Σ, Γ, M ,
and A to be given and construct M ′, A′ and K′.

Weak head reduction

whr beta
(λx:A.M)N

whr−→ [N/x]M

M
whr−→M ′

whr app

M N
whr−→M ′N

Conversion to canonical objects

Γ Σ̀ A ⇑ A′ : type Γ, x:A′ Σ̀ M x ⇑M ′ : B
pi

Γ Σ̀ M ⇑ λx:A′.M ′ : Πx:A.B

Γ Σ̀ M ↓ M ′ : P Γ Σ̀ P ≡ P ′
atm

Γ Σ̀ M ⇑M ′ : P ′

M
whr−→M ′ Γ Σ̀ M

′ ⇑M ′′ : P
whr

Γ Σ̀ M ⇑M ′′ : P

Conversion to atomic objects

c:A in Σ
con

Γ Σ̀ c ↓ c : A

x:A in Γ
var

Γ Σ̀ x ↓ x : A

Γ Σ̀ M ↓M ′ : Πx:A.B Γ Σ̀ N ⇑ N ′ : A
app

Γ Σ̀ M N ↓M ′ N ′ : [M ′/x]B

Conversion to canonical types

Γ Σ̀ A ⇑ A′ : type Γ, x:A′ Σ̀ B ⇑ B′ : type
pi

Γ Σ̀ Πx:A.B ⇑ Πx:A′. B′ : type

Γ Σ̀ P ↓ P ′ : type
atm

Γ Σ̀ P ⇑ P ′ : type
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Conversion to atomic types

a:K in Σ
con

Γ Σ̀ a ↓ a : K

Γ Σ̀ A ↓ A′ : Πx:B.K Γ Σ̀ M ⇑M ′ : B
app

Γ Σ̀ AM ↓ A′M ′ : [M ′/x]K

We show only the relevant properties for canonical forms on objects—atomic
forms, types, and kinds satisfy similar properties.

7.3. Theorem (Convertibility).

1. If Γ Σ̀ M ⇑M ′ : A then Γ Σ̀ M
′ ⇑ A.

2. If Γ Σ̀ M ⇑M ′ : A then Γ Σ̀ M ≡M ′ : A.

3. If Γ Σ̀ M : A then there is a unique M ′ such that Γ Σ̀ M ⇑M ′ : A.

4. Γ Σ̀ M ≡M ′ : A iff Γ Σ̀ M ⇑ N : A and Γ Σ̀ M
′ ⇑ N : A for some N .

Proof. The first two properties follow by simple structural inductions. The last
two follow from Coquand’s algorithm [Coquand 1991] by additional η-expansions.
Related proofs are given by Harper and Pfenning [2000] and Virga [1999].

8. Conclusion

We have provided an introduction to the techniques of logical frameworks with an
emphasis on LF which is based on the dependently typed λ-calculus λΠ. We now
summarize the basic choices that arise in the design of logical frameworks.

Equational vs. deductive encodings. Logical frameworks based on rewriting logic
[Mart̀ı-Oliet and Meseguer 1993] (variations of which are implemented in Maude
[Maude 1999] and ELAN [ELAN 1998, Kirchner et al. 1993, Haberstrau 1994,
Borovanský et al. 1998]) are based on equational reasoning, rewriting, and con-
straints, while others discussed in this chapter (LF, hereditary Harrop formulas,
FS0, ALF) are based on deductive reasoning. It is clear that each approach can
be simulated in the other, but usually with some loss of clarity, efficiency and
elegance for certain classes of applications. Rewriting logic, for example, deals par-
ticularly well with concurrency, while it does not seem well suited for situations
where deductions themselves need to be reified in the meta-language. First steps
for combining ideas from these classes of frameworks are the rewriting mechanisms
in Isabelle [Nipkow 1989] and the study of term rewriting in higher-order languages
with dependent types [Virga 1996, Virga 1999]. For more on rewriting logic and its
use as a logical framework, see [Meseguer 1998, Kirchner and Kirchner 1998]. The
semantic origin of this work is institutions [Goguen and Burstall 1992]; a connection
is made by Meseguer [1987].
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Strong vs. weak frameworks. De Bruijn, the founder of the field of logical frame-
works, argues in [de Bruijn 1991a] that logical frameworks should be foundationally
uncommitted and as weak as possible. This allows simple proofs of adequacy for
encodings, efficient checking of the correctness of derivations, and allows effective
algorithms for unification and proof search in the framework which are otherwise
difficult to design (for example, in the presence of iterated inductive definitions).
This is also important if we use explicit proofs as a means to increase confidence
in the results of a theorem prover: the simpler the logical framework, the more
trusted its implementation is likely to be. While most frameworks are based on
weak fragments of intuitionistic logic or type theory, labelled deductive systems as
proposed by Gabbay [1994, 1996] are a notable exception. They are based essen-
tially on classical, first-order logic where deductions are restricted through the use
of labels endowed with an equational theory. Proof search can proceed, for example,
by classical resolution techniques. For more on this approach, see Chapter XI. This
encoding is well-suited for modal logics, but it appears less immediately applicable
to other deductive systems, especially those arising in the theory of programming
languages.

Inductive representations vs. higher-order abstract syntax. This is related to the pre-
vious question. Inductive representations of logics are supported in FS0 [Feferman
1988] and ALF [Magnusson and Nordström 1994] and many logics not explic-
itly designed as logical frameworks such as Nuprl [Basin and Constable 1993],
LEGO [Pollack 1994], Coq [Dowek, Felty, Herbelin, Huet, Murthy, Parent, Paulin-
Mohring and Werner 1993], and Isabelle/HOL [Paulson 1993]. They allow a for-
mal development of the meta-theory of the deductive system in question, but
the encodings are less direct than for frameworks employing higher-order ab-
stract syntax and functional representations of hypothetical derivations. These are
the foundation of LF (underlying Elf) and hereditary Harrop formulas (underly-
ing λProlog and Isabelle). Present work on combining advantages of both either
employ reflection [Despeyroux et al. 1997, Leleu 1998] or formal meta-reasoning
about the logical framework itself [McDowell and Miller 1997, Schürmann and
Pfenning 1998, Schürmann 2000].

Logical vs. type-theoretic meta-languages. A logical meta-language such as one
based on hereditary Harrop formulas encodes judgments as propositions. Search
for a derivation in an object logic is reduced to proof search in the meta-logic.
In addition, type-theoretical meta-languages such as LF offer a representation for
derivations as objects. Checking the correctness of a derivation is reduced to type-
checking in the meta-language. This is a decidable property that enables the use of
a logical framework for applications such as proof-carrying code, where an explicit
representation for deductions is required (see Section 8.2).

Functional vs. logical meta-programming. ML has originally been designed as a
meta-language to program theorem provers for complex logics. It is still used in this
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capacity in many theorem proving environments and logical frameworks, including
Isabelle. The strategy language of ELAN is similar, but has rich primitives for non-
deterministic search which have to be programmed in ML, a sequential language.
The functional meta-language approach has the disadvantage that the programmer
must deal with many languages: the object logic, the logical framework, and the
implementation language of the logical framework. A more uniform approach is
to directly give an operational semantics to the logical framework in the spirit
of abstract logic programming [Miller et al. 1991]. This makes it quite easy to
program algorithms, but this approach has some drawbacks when it comes to user
interaction.

8.1. Framework extensions

Logical framework languages are judged along many dimensions, as the discus-
sions above indicate. Three of the most important concerns are how directly object
languages may be encoded, how easy it is to prove the adequacies of these encod-
ings, and how simple the proof checker for a logical framework can be. A great
deal of practical experience has been accumulated, for example, through the use
of λProlog, Isabelle, and Elf. These experiments have also identified certain short-
comings in the logical frameworks, some of them have even led to explicit negative
results [Gardner 1992]. We briefly summarize some of the current research on refin-
ing or extending logical frameworks. Any proposed extension must carefully weigh
the benefits for classes of applications against the complications it introduces into
the meta-theory.

Substructural extensions. Frameworks such as hereditary Harrop formulas or LF
can encode linear and other substructural logics [Girard 1987], but their encodings
are not as direct as one might hope. The reason is that linear assumptions (each of
which must be used exactly once) can not be modeled as hypotheses in the meta-
language (which satisfy weakening and contraction). For similar reasons, the store
in the encoding of an imperative programming language cannot be modeled via hy-
potheses on the values of the cells in the store. The linear frameworks Forum and
linear LF have been designed to overcome these limitations. Forum [Miller 1994]
is based on classical linear logic and extends hereditary Harrop formulas. Chirimar
[1995] shows how to apply Forum to the theory of imperative programming lan-
guages. Linear LF [Cervesato and Pfenning 1997] is a conservative extension of LF
with linear hypotheses. The desirable properties of LF are retained when the new
connectives are restricted to linear implication, additive conjunction, and additive
truth. Unlike Forum, the connectives are interpreted intuitionistically, which allows
proof terms with decidable equality and type-checking relations to reify linear de-
ductions and imperative computations. Applications to imperative programming
can be found in [Cervesato 1996], applications to cut-elimination in both classical
and intuitionistic sequent calculi are given in [Pfenning 1994b].
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Subtyping. In many cases an object language or logic exhibits natural subtyping
relationships. For example, deductions in normal form may be considered a subtype
of arbitrary natural deductions. In the absence of subtyping, these can be coded
either as explicit higher-level judgments or via explicit coercions, in both cases
often significantly complicating the representation. In [Pfenning 1993], we have
proposed an extension of LF to permit a simple and decidable subtyping judgment.
Despite its relative simplicity it complicates unification and proof search [Kohlhase
and Pfenning 1993] and the pragmatic consequences are unclear at present. Other
approaches for general type theories have also been proposed recently [Aspinall
and Compagnoni 1996], but their practicality in the context of logical frameworks
is untested.

Polymorphism. Both Isabelle and λProlog allow polymorphism in the presentation
of logics; in the case of Isabelle this includes sort restrictions on type variables. Like
subtyping, polymorphism significantly complicates unification and proof search.
Adequacy of encodings using higher-order abstract syntax is also more difficult to
prove, since the notion of η-long form is more complex [Dowek, Huet and Werner
1993, Ghani 1997] and not preserved under substitution for type variables. On
the other hand, polymorphism avoids code duplication—a similar effect might be
achieved with module systems instead.

Module languages. The modular presentation of logical systems has always been
considered important. For Automath, de Bruijn has proposed the notion of
telescope [de Bruijn 1991b] as a modularity mechanism. For pure type sys-
tems [Barendregt 1992] (which include λΠ as a subcalculus) Courant [1997, 1999]
has described a general module calculus. The modular presentation of logics has
been investigated in [Harper, Sannella and Tarlecki 1989a, Harper, Sannella and
Tarlecki 1989b, Harper, Sannella and Tarlecki 1994] and cast in a concrete module
language for Elf in [Harper and Pfenning 1998] following the ideas of signatures and
functors in ML. Rewriting logic also explicitly supports logic morphisms within a
flexible module language based on [Meseguer 1987]. The notion of theory in Isabelle
provides another structuring mechanism [Nipkow 1993]. The module language for
λProlog is more concerned with the operational semantics and search spaces while
remaining based on solid logical foundations [Miller 1986, Miller 1989, Nadathur
and Tong 1999].

8.2. Proof-carrying code

An important recent application of logical frameworks is the notion of proof-carrying
code (PCC) [Necula 1997] and certifying compilation [Necula 1998, Necula and Lee
1998a]. Proof-carrying code is a safety infrastructure for mobile code and operating
system extension. A code producer supplies not only a binary executable but also
a proof of its safety according to some predetermined safety policy. This proof is
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expressed as an object in the LF logical framework, although other type-theoretic
frameworks could be used as well. The code consumer downloads the binary and
proof object and checks the safety proof against the binary. This is accomplished
by generating a verification condition A from the binary in a single, linear sweep
and then checking the proof object M against the verification condition by simple
LF type-checking, M : A.

A safety policy is expressed by a verification condition generator and an LF
signature which encodes the proof rules for verification conditions. Examples of
such safety policies are type safety and memory safety, guaranteeing that a program
will not access memory outside its address space [Necula 1998]. Another example is
resource bounds in operating systems extensions such as packet filters [Necula and
Lee 1996].

Since both the verification condition generator and the LF type-checker are rel-
atively small (compared to compilers or theorem provers), the trusted computing
base of this architecture is quite small. The use of a logical framework where de-
ductions are reified as objects allows one single implementation to support multiple
safety policies and proof rules, increasing trust in the reliability of the architecture,
especially since the properties of LF are well understood and thoroughly investi-
gated.

The realization of proof-carrying code raised some interesting directions for the
development of logical frameworks. Here we consider two: how do we generate proof
objects and how can we eliminate redundancy from LF objects to achieve compact
encodings of proofs?

The generation of proof objects is the task of a certifying compiler which takes
advantage of properties of the source language to generate annotations on the as-
sembly code. In case of the Touchstone compiler [Necula 1998], this is a safe subset
of C. The annotations guarantee that a specialized theorem prover has enough infor-
mation to derive the verification condition for the binary. The specialized theorem
prover maintains enough information to generate LF proof objects with respect to
the axioms and inference rules available for the given safety policy. For type and
memory safety, this has been shown to be practical, including a proof-generating
version of the simplex algorithm described in [Necula 1998]. Thus, the theorem
prover as a whole does not need to be trusted, since it generates derivations which
can be verified independently.

The second question concerns the elimination of redundancy in the LF represen-
tation of derivations. A first proposal in this direction for the Elf logic programming
language was made in [Michaylov and Pfenning 1992]. In PCC, the representation
can be further optimized [Necula and Lee 1998b] since the main operation we are
concerned with is type-checking, while Elf has to support unification and proof
search. The principle, however is the same and goes back to the notion of strict-
ness in functional languages. This has been analyzed by Pfenning and Schürmann
[1998a].
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8.3. Further reading

There have been numerous case studies and applications carried out with the aid of
logical frameworks or generic theorem provers, too many to survey them here. The
principal application areas lie in the theory of programming languages and logics,
reasoning about specifications, programs, and protocols, and the formalization of
mathematics. We refer the interested reader to [Pfenning 1996] for some further in-
formation on applications of logical frameworks. A survey with deeper coverage of
modal logics and inductive definitions can be found in [Basin and Matthews 2000].
The textbook [Pfenning 2001] provides a gentler and more thorough introduction to
the pragmatics of the LF logical framework and its use for the study of programming
languages. The author also maintains a home page on logical frameworks [Logical
Frameworks 1994] at http://www.cs.cmu.edu/~fp/lfs.htmlwhich is periodically
updated, and which contains a more extensive bibliography and pointers to imple-
mentations, mailing lists, and related material.

Bibliography

Abel A. [1999], A semantic analysis of structural recursion, Master’s thesis, Ludwig-Maximilians-
Universität München.

Allen S. F., Constable R. L., Howe D. J. and Aitken W. E. [1990], The semantics of

reflected proof, in ‘Proceedings of the Fifth Annual Symposium on Logic in Computer Science
(LICS’90)’, IEEE Computer Society Press, pp. 95–105.

Altenkirch T., Gaspes V., Nordström B. and von Sydow B. [1994], A User’s Guide to ALF,
Chalmers University of Technology, Sweden.

Andreoli J.-M. [1992], ‘Logic programming with focusing proofs in linear logic’, Journal of

Logic and Computation 2(3), 297–347.

Aspinall D. and Compagnoni A. [1996], Subtyping dependent types, in E. Clarke, ed., ‘Pro-
ceedings of the 11th Annual Symposium on Logic in Computer Science’, IEEE Computer

Society Press, New Brunswick, New Jersey, pp. 86–97.

Barendregt H. P. [1980], The Lambda-Calculus: Its Syntax and Semantics, North-Holland.

Barendregt H. P. [1992], Lambda calculi with types, in S. Abramsky, D. Gabbay and
T. Maibaum, eds, ‘Handbook of Logic in Computer Science’, Vol. 2, Oxford University Press,

chapter 2, pp. 117–309.

Basin D. A. and Constable R. L. [1993], Metalogical frameworks, in G. Huet and G. Plotkin,
eds, ‘Logical Environments’, Cambridge University Press, pp. 1–29.

Basin D. and Matthews S. [1996], Structuring metatheory on inductive definitions, in

M. McRobbie and J. Slaney, eds, ‘Proceedings of the 13th International Conference on Au-
tomated Deduction (CADE-13)’, Springer-Verlag LNAI 1104, New Brunswick, New Jersey,

pp. 171–185.

Basin D. and Matthews S. [2000], Logical frameworks, in D. Gabbay and F. Guenthner, eds,
‘Handbook of Philosophical Logic’, 2nd edn, Kluwer Academic Publishers. In preparation.
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